Reinforcing Steel Rebar Bs4449 Grade 460B
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 130 m.t.
- Supply Capability:
- 500000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Reinforcing Steel Rebar Bs4449 Grade 460B
Description of Reinforcing Steel Rebar Bs4449 Grade 460B
1, Diameter: 5.5mm-10mm Reinforcing Steel Rebar Bs4449 Grade 460B
10m- 40mm Reinforcing Steel Rebar Bs4449 Grade 460B
2, Length: 6m, 9m, 12m or customized
3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN
OEM technology - send detailed technical parameters for accurate quotation.
2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet -
hot rolled or forged to get the steel round bar and plate
3, Heat Treatment: annealing, normalizing, tempering, quenching
4, Surface Treatment: Black
5, Quality Assurance: We accept third party inspection for all orders.
You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.
Chemical Composition of Reinforcing Steel Rebar Bs4449 Grade 460B
Grade | Technical data of the original chemical composition(%) | |||||
Reinforcing steel bar HRB335 | C | Mn | Si | S | P | B |
≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | >0.0008 | |
Physics Capability | ||||||
Yield Strength(N/cm2) | Tensile Strength(N/cm2) | Elongation(%) | ||||
≥ 335 | ≥490 | ≥16 | ||||
Reinforcing steel bar HRB400 | C | Mn | Si | S | P | B |
≤0.25 | ≤0.16 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physics Capability | ||||||
Yield Strength(N/cm2) | Tensile Strength(N/cm2) | Elongation(%) | ||||
≥ 400 | ≥ 570 | ≥ 14 |
Products Show of Reinforcing Steel Rebar Bs4449 Grade 460B
Company Information
CNBM International Corporation is the most important trading platform of CNBM group.
Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.
F A Q
1, Your advantages?
professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale
2, Test & Certificate?
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem
3, Factory or Trading Company?
CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.
4, Payment Terms?
30% TT as deposit and 70% before delivery.
Irrevocable L/C at sight.
5, Trading Terms?
EXW, FOB, CIF, FFR, CNF
6, After-sale Service?
CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.
For any problem, please kindly contact us at any your convenient time.
We'll reply you in our first priority within 24 hours.
- Q: What are the requirements for special steel used in electronic components?
- The requirements for special steel used in electronic components include high electrical conductivity, excellent corrosion resistance, good magnetic properties, and the ability to withstand high temperatures. Additionally, the steel should have low impurity levels to prevent any interference with electronic signals and should also possess high strength and durability to ensure long-term performance and reliability of the components.
- Q: How does special steel enhance the durability of products?
- Special steel enhances the durability of products by providing them with superior strength, hardness, and resistance to corrosion and wear. Its unique composition and manufacturing processes result in a material that can withstand high pressure, extreme temperatures, and harsh environments, making it ideal for applications where regular steel would fail. This enhanced durability ultimately leads to longer product lifespans, increased reliability, and reduced maintenance costs.
- Q: Can special steel be used for making marine components?
- Yes, special steel can be used for making marine components. Special steel, also known as marine grade steel, is specifically designed to withstand the harsh conditions of marine environments. These environments are exposed to corrosion, high humidity, and saltwater, which can cause regular steel to deteriorate quickly. Marine grade steel is typically made with added alloys, such as nickel, chromium, and molybdenum, which provide excellent corrosion resistance and durability. These alloys help the steel resist the corrosive effects of saltwater and prevent rusting. Additionally, special steel is often coated with protective coatings or treated to further enhance its resistance to corrosion. Marine components made from special steel include ship hulls, propellers, shafts, valves, pipelines, and various structural elements. The use of special steel ensures the longevity and reliability of these components in demanding marine conditions. Furthermore, the strength and toughness of special steel make it suitable for withstanding the high mechanical stresses and impacts experienced at sea. In summary, special steel is an ideal material for making marine components due to its superior corrosion resistance, durability, and strength. It helps to ensure the longevity and reliability of marine structures and equipment in harsh marine environments.
- Q: What are the different corrosion protection techniques used for special steel?
- There are several corrosion protection techniques used for special steel, including: 1. Coatings: Applying protective coatings like paints, epoxy, or polyurethane can create a barrier between the steel surface and corrosive elements, preventing direct contact and oxidation. 2. Galvanization: Special steel can be hot-dip galvanized, where a layer of zinc is applied to the surface. This zinc layer acts as a sacrificial anode, corroding in place of the steel and providing protection against corrosion. 3. Cathodic protection: This technique involves connecting the special steel to a sacrificial anode, such as zinc or magnesium, through an electrical circuit. The anode corrodes instead of the steel, extending its lifespan. 4. Passivation: Passivation is a chemical process that removes free iron and other contaminants from the surface of the steel, creating a passive oxide layer that enhances corrosion resistance. 5. Alloying: By adding specific alloying elements like chromium, nickel, or molybdenum to the special steel, its corrosion resistance can be significantly improved. 6. VCI (Volatile Corrosion Inhibitors): VCI techniques involve using chemicals that emit volatile corrosion inhibitors, which form a protective layer on the steel surface, inhibiting corrosion. It is important to assess the specific requirements, environment, and intended application of the special steel in order to select the most suitable corrosion protection technique.
- Q: How is corrosion-resistant stainless steel used in the production of marine equipment?
- Corrosion-resistant stainless steel is extensively used in the production of marine equipment due to its ability to withstand harsh marine environments. It is commonly used in the construction of ship hulls, propellers, valves, pumps, and other critical components. The stainless steel's resistance to corrosion helps prevent damage caused by saltwater, which can significantly extend the lifespan of the equipment and ensure its reliability and safety at sea.
- Q: What are the advantages of using special steel over other materials?
- Special steel has several advantages over other materials. Firstly, it offers exceptional strength and durability, making it ideal for applications where high performance and reliability are crucial. Additionally, special steel possesses excellent resistance to corrosion, heat, and wear, ensuring longevity and reduced maintenance costs. Moreover, it provides versatility in terms of customization and can be tailored to specific requirements, making it suitable for a wide range of industries and applications. Lastly, special steel offers superior machinability and weldability, facilitating ease of processing and fabrication.
- Q: How does special steel perform in cutting applications?
- The outstanding performance of special steel in cutting applications is highly regarded. Its unique composition and properties give it superior strength, hardness, and wear resistance compared to regular steel. These characteristics make it highly effective in handling the intense forces and pressures involved in cutting processes. Special steel is renowned for its ability to maintain its shape and sharpness even in extreme conditions. It possesses a high level of toughness, enabling it to withstand repeated impact and resist deformation or breakage. This durability allows it to retain its cutting edge for a longer period, resulting in extended tool life and reduced downtime for blade sharpening or replacement. Moreover, special steel's hardness enables it to effectively cut through tough and abrasive materials such as metals, alloys, and composites. It can endure the heat generated during cutting, preventing the blade from becoming dull or losing its cutting ability. This heat resistance also minimizes the risk of thermal damage to the workpiece, ensuring precise and clean cuts. Furthermore, special steel offers excellent corrosion resistance in addition to its mechanical properties. This is particularly advantageous in cutting applications that involve exposure to moisture, chemicals, or corrosive environments. The corrosion resistance guarantees that cutting tools made from special steel maintain their performance and longevity, even in challenging conditions. In conclusion, special steel demonstrates exceptional performance in cutting applications due to its superior strength, hardness, wear resistance, and corrosion resistance. Its ability to maintain a sharp cutting edge, endure high pressures and temperatures, and resist corrosion makes it a preferred choice in various industries, including manufacturing, construction, automotive, and aerospace.
- Q: Can special steel be used in the pharmaceutical manufacturing industry?
- Yes, special steel can be used in the pharmaceutical manufacturing industry. Special steel is often chosen for its high corrosion resistance, hygiene, and cleanability properties. It is commonly used in the production of pharmaceutical equipment such as tanks, vessels, valves, and piping systems to ensure the quality and safety of pharmaceutical products.
- Q: What are the different methods of improving the machinability of special steel?
- To enhance the machinability of special steel, various techniques can be employed. These techniques encompass: 1. Alloying: The machinability can be improved by incorporating specific alloying elements like sulfur, selenium, lead, or bismuth into the steel composition. These elements serve as lubricants during machining, reducing friction and cutting forces. 2. Heat treatment: Enhancing the machinability of special steel can be achieved through heat treatment processes such as annealing, normalizing, or stress relieving. These processes refine the microstructure, lower hardness, and increase ductility, facilitating easier machining. 3. Modifying the microstructure: The machinability of special steel can be enhanced by modifying its microstructure through grain refinement or controlled precipitation of carbides. Generally, fine-grained steels are easier to machine due to reduced cutting forces. 4. Surface coatings: The application of specialized coatings like titanium nitride (TiN) or diamond-like carbon (DLC) onto the surface of special steel can minimize friction, extend tool life, and enhance chip flow during machining. 5. Optimal tool selection and optimization: The choice of cutting tools with specific geometries, coatings, and cutting parameters can greatly enhance machinability. Selecting the ideal tool ensures efficient chip evacuation, minimizes heat generation, and reduces tool wear. 6. Optimization of machining parameters: Adjusting parameters such as cutting speed, feed rate, and depth of cut significantly impacts machinability. Fine-tuning these parameters helps reduce tool wear, control chip formation, and achieve superior surface finish. 7. Lubrication and cooling: Employing appropriate lubrication and cooling methods, such as cutting fluids or coolants, enhances machinability by reducing friction and heat generation during machining. This prolongs tool life and minimizes workpiece deformation. It is essential to consider that the specific technique or combination of techniques utilized to improve machinability will depend on the type of special steel and the desired machining outcome.
- Q: Can special steel be used in the wastewater treatment industry?
- Yes, special steel can be used in the wastewater treatment industry. Special steel, such as stainless steel or corrosion-resistant alloys, is often utilized in the construction of equipment and infrastructure used in wastewater treatment plants. These materials offer high resistance to corrosion, chemicals, and harsh operating conditions, ensuring durability and longevity in wastewater treatment processes. Additionally, special steel's hygienic properties make it suitable for applications where cleanliness and sterilization are crucial.
Send your message to us
Reinforcing Steel Rebar Bs4449 Grade 460B
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 130 m.t.
- Supply Capability:
- 500000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords