• Reinforcing Steel Rebar Bs4449 Grade 460B System 1
  • Reinforcing Steel Rebar Bs4449 Grade 460B System 2
  • Reinforcing Steel Rebar Bs4449 Grade 460B System 3
  • Reinforcing Steel Rebar Bs4449 Grade 460B System 4
  • Reinforcing Steel Rebar Bs4449 Grade 460B System 5
  • Reinforcing Steel Rebar Bs4449 Grade 460B System 6
Reinforcing Steel Rebar Bs4449 Grade 460B

Reinforcing Steel Rebar Bs4449 Grade 460B

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
130 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

Reinforcing Steel Rebar Bs4449 Grade 460B


Description of Reinforcing Steel Rebar Bs4449 Grade 460B

1, Diameter: 5.5mm-10mm Reinforcing Steel Rebar Bs4449 Grade 460B

                       10m- 40mm Reinforcing Steel Rebar Bs4449 Grade 460B

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of Reinforcing Steel Rebar Bs4449 Grade 460B

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of Reinforcing Steel Rebar Bs4449 Grade 460B

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q: What are the main applications of special steel in the energy storage industry?
Special steel is widely used in the energy storage industry for various applications. One of the main applications is in the manufacturing of high-quality battery cases, where the steel's exceptional strength and corrosion resistance ensure the safety and longevity of the batteries. Additionally, special steel is used in the construction of energy storage systems, such as pumped hydro storage and compressed air energy storage, due to its durability and resistance to extreme conditions. Overall, special steel plays a crucial role in ensuring the efficiency, reliability, and safety of energy storage technologies in the industry.
Q: What are the properties of wear-resistant steel?
Wear-resistant steel possesses unique properties that make it highly resistant to abrasion and wear. It has a high hardness level, which enables it to withstand repeated impact and friction without deforming or wearing down. Additionally, wear-resistant steel exhibits excellent toughness, allowing it to absorb energy and resist cracking or breaking under harsh conditions. It also has a high strength-to-weight ratio, making it suitable for applications requiring both strength and durability. Overall, the properties of wear-resistant steel make it ideal for use in industries such as mining, construction, manufacturing, and transportation, where materials are subjected to intense wear and tear.
Q: How does special steel contribute to the telecommunications industry?
The telecommunications industry relies heavily on special steel, which plays a vital role by offering the necessary strength, durability, and resistance to various environmental factors. Special steel finds its primary use in the manufacturing of transmission towers, antenna systems, and other supporting structures in telecommunications. For instance, transmission towers serve as the backbone of the telecommunications network, requiring the ability to withstand extreme weather conditions like strong winds, heavy precipitation, and even earthquakes. Special steel ensures the stability and functionality of these towers under such challenging circumstances due to its high tensile strength and resistance to corrosion. Furthermore, antenna systems also benefit from the use of special steel. Whether it's for satellite communication or wireless networks, antennas require materials with excellent electrical conductivity and low signal loss. Special steel alloys meet these requirements, enabling efficient signal transmission and reception. Moreover, special steel offers the advantage of being lightweight while maintaining its strength, making it ideal for constructing structures that need to be installed at significant heights, such as telecommunication towers. By utilizing special steel, telecommunications companies can achieve cost savings in both construction and transportation. Additionally, the durability and resistance to corrosion of special steel make it ideal for long-term use in the telecommunications industry. These properties contribute to the extended lifespan of structures and equipment made from special steel, reducing maintenance and replacement costs. The longevity of special steel also enhances the overall reliability and stability of the telecommunications network. In summary, special steel's unique properties, including its strength, durability, resistance to environmental factors, and efficient signal transmission capabilities, make it an essential material in the telecommunications industry. By providing support and reliability, special steel significantly contributes to the seamless operation of communication networks, enabling efficient and reliable connectivity for individuals and businesses worldwide.
Q: How does special steel contribute to improving product reliability?
Special steel contributes to improving product reliability in several ways. Firstly, special steel is known for its exceptional strength and durability, which enhances the overall performance and lifespan of various products. It can withstand heavy loads, resist wear and tear, and maintain its structural integrity even under extreme conditions. Secondly, special steels often possess excellent corrosion resistance properties, preventing rust and deterioration over time. This is particularly crucial for products exposed to moisture or harsh environments. Additionally, special steel allows for precise manufacturing and provides consistent material properties, ensuring the quality and reliability of the final product. By utilizing special steel, manufacturers can enhance the reliability of their products, offering customers a longer lifespan, reduced maintenance requirements, and increased safety and performance.
Q: How is high-temperature alloy steel used in the production of heat exchangers?
High-temperature alloy steel is used in the production of heat exchangers due to its exceptional heat resistance and strength properties. This type of steel can withstand high temperatures without deforming or losing its mechanical properties, making it ideal for handling hot fluids or gases in heat exchange processes. The alloy's ability to resist corrosion and oxidation further enhances its suitability for this application. Overall, high-temperature alloy steel ensures the durability and efficiency of heat exchangers in various industries such as power generation, chemical processing, and petroleum refining.
Q: Can special steel be used for making aerospace components?
Indeed, aerospace components can be manufactured using special steel. Also referred to as aerospace steel or aircraft steel, this specific type of steel is meticulously designed to meet the rigorous demands and strict requirements of the aerospace sector. It possesses outstanding properties such as exceptional strength, durability, and heat resistance, all of which are vital for enduring the extreme conditions faced by aircraft components during flight. Aerospace components, including landing gear, engine parts, fasteners, and structural elements, often necessitate materials that can maintain their integrity even when subjected to high temperatures, stress, and corrosive environments. Special steel alloys are developed to possess excellent mechanical properties, such as high tensile strength, fracture toughness, and resistance to fatigue, creep, and corrosion. These properties render them suitable for crucial aerospace applications where safety and reliability are of the utmost importance. Furthermore, special steel can be customized to meet specific requirements, such as weight reduction, improved fuel efficiency, and enhanced performance. By employing advanced alloying techniques and heat treatments, aerospace steel can be engineered to possess desirable characteristics like increased hardness, wear resistance, and dimensional stability. This enables the production of lighter and more efficient aerospace components without compromising on strength or safety. In conclusion, special steel stands out as the preferred material for manufacturing aerospace components due to its exceptional mechanical properties, heat resistance, and corrosion resistance. Its ability to withstand extreme conditions and be tailored to specific requirements makes it an ideal choice for producing critical parts used in the aerospace industry.
Q: What are the limitations of using special steel in high-temperature applications?
The utilization of special steel in high-temperature scenarios comes with its own set of constraints. One notable limitation is the potential for thermal expansion. Similar to other materials, special steel expands when subjected to high temperatures. This expansion can result in changes in dimensions and internal stress, which can impact the overall performance and integrity of the structure. Another constraint is the likelihood of oxidation and corrosion. Elevated temperatures can expedite the oxidation process, leading to the formation of oxides on the steel's surface. These oxides can cause corrosion and weaken the material over time. To counteract this drawback, special steel alloys with enhanced resistance to oxidation and corrosion are frequently employed in high-temperature applications. Additionally, special steel may experience a decrease in strength at higher temperatures. The mechanical properties of the material, such as tensile strength and hardness, can be significantly diminished as the temperature rises. This reduction in strength can compromise the structural integrity of the component, making it more susceptible to failure. Lastly, special steel may possess a limited temperature range within which its desired properties can be maintained. Beyond a certain temperature threshold, the material may undergo phase transformations or experience degradation, resulting in a loss of its intended characteristics. It is crucial to carefully assess the operating temperature and select the appropriate special steel alloy with a suitable temperature range for the specific high-temperature application. In conclusion, while special steel presents numerous advantages for high-temperature applications, such as exceptional strength, durability, and heat resistance, it is vital to acknowledge its limitations. Considerations such as thermal expansion, oxidation and corrosion, reduced strength at high temperatures, and temperature restrictions must be taken into account and addressed when utilizing special steel in these applications.
Q: Can special steel be used in the production of consumer goods?
Yes, special steel can be used in the production of consumer goods. Special steel offers enhanced properties such as high strength, durability, corrosion resistance, and heat resistance, making it suitable for various consumer goods applications. It can be utilized in the manufacturing of kitchen utensils, cutlery, appliances, automotive parts, tools, and more, ensuring improved performance and longevity of these products.
Q: How does special steel contribute to improving product sustainability?
Special steel contributes to improving product sustainability in various ways. Firstly, special steel is known for its durability and strength, which enables products made from it to have a longer lifespan. This reduces the need for frequent replacements, minimizing waste and conserving resources. Additionally, special steel is highly recyclable, allowing it to be reused and transformed into new products, thus reducing the demand for virgin materials. Furthermore, special steel's resistance to corrosion and wear makes it suitable for harsh environments, reducing maintenance requirements and extending product lifecycles. Overall, the use of special steel enhances product sustainability by promoting longevity, resource conservation, and circular economy principles.
Q: What are the specific requirements for special steel used in the nuclear industry?
Special steel used in the nuclear industry must meet specific requirements to ensure safety, durability, and reliability. These requirements include: 1. Radiation Resistance: Special steel used in the nuclear industry must possess high radiation resistance to withstand the intense radiation levels present in nuclear reactors. This means that the steel should have low neutron absorption and minimal degradation under irradiation. 2. High Strength and Toughness: Nuclear reactors operate under extreme conditions, including high temperatures and pressure. Special steel used in the nuclear industry must have excellent strength and toughness to withstand these conditions and prevent structural failure. 3. Corrosion Resistance: The steel used in nuclear applications must be highly resistant to corrosion, as exposure to corrosive environments can compromise the integrity of the reactor components. This involves the steel having low susceptibility to stress corrosion cracking, intergranular corrosion, and pitting corrosion. 4. Low Impurity Content: Special steel used in the nuclear industry must have a low impurity content to minimize the potential for radioactive contamination. Any impurities present in the steel can become activated and release radioactive particles, posing a significant safety hazard. 5. Thermal Stability: The steel must have excellent thermal stability to maintain its mechanical properties even under high-temperature conditions. This ensures that the steel remains reliable and performs as expected during prolonged exposure to elevated temperatures. 6. Non-Magnetic Properties: Some components in nuclear reactors require non-magnetic materials to prevent interference with sensitive instruments and equipment. Special steel used in these applications must possess non-magnetic properties to meet this requirement. 7. Regulatory Compliance: Special steel used in the nuclear industry must meet specific regulatory standards and certifications to ensure its suitability for use in nuclear facilities. These standards may vary depending on the country or region, but they typically encompass rigorous quality control, testing, and inspection procedures. Meeting these specific requirements for special steel used in the nuclear industry is crucial for maintaining the safety and integrity of nuclear reactors. Compliance with these standards ensures that the steel can withstand the harsh conditions and the potential hazards associated with nuclear power generation.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords