• Bs4449 500B Reinforcing Steel Rebar System 1
  • Bs4449 500B Reinforcing Steel Rebar System 2
  • Bs4449 500B Reinforcing Steel Rebar System 3
  • Bs4449 500B Reinforcing Steel Rebar System 4
  • Bs4449 500B Reinforcing Steel Rebar System 5
  • Bs4449 500B Reinforcing Steel Rebar System 6
Bs4449 500B Reinforcing Steel Rebar

Bs4449 500B Reinforcing Steel Rebar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
140 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

Bs4449 500B Reinforcing Steel Rebar


Description of Bs4449 500B Reinforcing Steel Rebar

1, Diameter: 5.5mm-10mm Bs4449 500B Reinforcing Steel Rebar

                       10m- 40mm Bs4449 500B Reinforcing Steel Rebar

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of Bs4449 500B Reinforcing Steel Rebar

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of Bs4449 500B Reinforcing Steel Rebar

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q: How does special steel contribute to the waste management industry?
Special steel contributes to the waste management industry by providing durable and corrosion-resistant materials for the construction of waste handling equipment and infrastructure. Special steel is used to manufacture waste containers, compactors, shredders, and incinerators, ensuring their longevity and efficiency in handling waste. Additionally, special steel is utilized in the construction of waste treatment plants and landfill facilities, providing structural strength and resistance to harsh environmental conditions. Overall, special steel plays a crucial role in enhancing the effectiveness and sustainability of waste management practices.
Q: How does special steel perform in cryogenic wear resistance?
Special steel is renowned for its outstanding performance in resisting wear and tear in cryogenic environments. When exposed to extremely low temperatures, special steel retains its strength, hardness, and durability, rendering it highly resistant to wearing and friction. This is particularly vital in applications involving cryogenic settings, such as those found in the aerospace industry or in superconductor production. The distinct composition and processing techniques employed in special steel enable it to withstand the challenges posed by cryogenic conditions. It showcases superior toughness, ensuring that it does not become brittle or susceptible to cracking when subjected to low temperatures. Furthermore, the steel's microstructure remains stable, preventing any significant alterations in its mechanical properties when exposed to extreme cold. Moreover, special steel is frequently subjected to various surface coatings or heat treatments to further enhance its resistance to wear. These treatments generate a protective layer or alter the steel's microstructure, thereby reducing the likelihood of wear and prolonging its lifespan in cryogenic environments. To summarize, special steel excels in resisting wear and tear in cryogenic conditions due to its ability to maintain strength, hardness, and durability at extremely low temperatures. Its exceptional toughness, stable microstructure, and potential for surface treatments make it the preferred choice for applications that demand reliable performance in cryogenic settings.
Q: What are the different methods of controlling the grain size in special steel?
Some of the different methods of controlling the grain size in special steel include thermomechanical processing, alloying elements, grain refinement techniques such as grain size control agents, and heat treatment methods like annealing and quenching.
Q: How does special steel contribute to the aerospace fuel efficiency?
Special steel contributes to aerospace fuel efficiency in several ways. Firstly, special steel alloys are used in the construction of aircraft engines, which helps reduce their weight while maintaining strength and durability. This reduction in weight results in lower fuel consumption as the engines require less energy to propel the aircraft. Additionally, special steel is also utilized in the manufacturing of lightweight airframe components, such as wings and landing gear, which further contributes to fuel efficiency by reducing the overall weight of the aircraft. Furthermore, special steel's corrosion resistance properties ensure the longevity of aerospace components, reducing the need for frequent replacements and maintenance, which in turn helps optimize fuel efficiency.
Q: What are the requirements for special steel used in cryogenic applications?
The requirements for special steel used in cryogenic applications include high strength and toughness at low temperatures, resistance to thermal stresses, low thermal conductivity, and the ability to maintain mechanical properties even in extremely cold environments. Additionally, the steel must possess excellent corrosion resistance to prevent degradation in cryogenic fluids and be able to withstand the extreme temperature cycling that occurs during cryogenic processes.
Q: How does special steel contribute to the ductility of products?
Special steel contributes to the ductility of products through its unique composition and manufacturing processes. Ductility refers to a material's ability to deform under stress without fracturing or breaking. In the case of special steel, its composition includes certain alloying elements that enhance its ductility. One way special steel contributes to ductility is by reducing the presence of impurities. Special steel is produced with strict quality control measures, ensuring that impurities such as sulfur and phosphorus are kept at low levels. These impurities can cause brittleness in steel, reducing its ductility. By minimizing their presence, special steel maintains its ductile properties, allowing it to deform without failure. Furthermore, special steel often contains specific alloying elements like nickel, chromium, and molybdenum. These alloying elements play a crucial role in enhancing ductility. For instance, nickel improves the toughness and ductility of steel by increasing its ability to absorb energy before fracture. Chromium, on the other hand, enhances resistance to corrosion and oxidation, thereby preserving the ductility of the steel. The manufacturing processes used to produce special steel also contribute to its ductility. Precise temperature control during the heat treatment of special steel can optimize the microstructure, resulting in improved ductility. Additionally, special steel can undergo various forming processes, such as hot or cold rolling, which further refine its microstructure and enhance its ductility. Overall, special steel's unique composition, low impurity levels, and specific alloying elements, combined with precise manufacturing processes, contribute significantly to its ductility. This makes it an excellent choice for products that require deformation without failure, such as automotive components, machinery parts, and structural applications.
Q: What are the different methods of surface protection for special steel?
Different methods of surface protection for special steel offer unique benefits and are suitable for specific applications. Some commonly used methods are: 1. Galvanization: Zinc coating is applied to the steel, providing excellent corrosion resistance. Hot-dip galvanization or electroplating can be used depending on the requirements. 2. Paint coating: A paint coating is applied to protect the steel from corrosion and environmental factors. The paint acts as a barrier, preventing rust and damage. 3. Powder coating: Dry powder is applied to the steel surface and heated to create a protective layer. This method offers excellent resistance to corrosion, chemicals, and abrasion, making it ideal for harsh conditions. 4. Electroplating: A layer of metal is deposited onto the steel surface through an electrochemical process. This enhances corrosion resistance and may provide additional benefits such as increased hardness or improved aesthetics. 5. Thermal spraying: Material like zinc or aluminum is melted or heated and sprayed onto the steel surface to form a protective coating. Thermal spraying offers excellent corrosion protection and can be used for surface repairs. 6. Ceramic coating: Ceramic coatings are highly resistant to corrosion, abrasion, and high temperatures. They are commonly used in extreme conditions such as the aerospace or automotive industries. 7. Passivation: Chemical process removes free iron and contaminants from the surface of stainless steel. This improves corrosion resistance by forming a passive oxide layer. Choosing the appropriate surface protection method depends on the specific requirements of the steel and its application. Factors such as desired corrosion resistance level, environmental conditions, and desired lifespan should be considered when selecting a method.
Q: What are the specific requirements for special steel used in the nuclear waste storage industry?
The specific requirements for special steel used in the nuclear waste storage industry are stringent and critical for ensuring the safety and long-term viability of the storage facilities. These requirements are primarily driven by the need to mitigate the potential risks associated with nuclear waste, such as radiation leakage and corrosion. One of the key requirements is high strength and durability. Special steel used in nuclear waste storage must have exceptional mechanical properties to withstand the weight and pressure exerted by the waste containers and the surrounding environment. This includes resistance to deformation, fracture, and fatigue, as well as the ability to maintain its structural integrity over an extended period. Another crucial requirement is excellent corrosion resistance. Nuclear waste contains highly corrosive substances that can degrade regular steel over time. Therefore, special steel used in the nuclear waste storage industry must have enhanced corrosion resistance to ensure long-term durability and prevent leakage of radioactive materials. Moreover, the steel must have a low susceptibility to stress corrosion cracking (SCC). SCC occurs when a combination of tensile stress, corrosive environment, and specific material conditions result in crack initiation and propagation. Given the potential consequences of a breach in the storage facility, the steel used must be highly resistant to SCC to ensure the integrity of the containers and minimize the risk of leakage. Radiation resistance is also a critical requirement for special steel used in nuclear waste storage. The steel should exhibit minimal degradation or embrittlement when exposed to high levels of radiation. This is essential to maintain the structural integrity of the storage containers and prevent any weakening that could compromise the containment of the waste. Additionally, the special steel used in the nuclear waste storage industry must comply with strict regulatory standards and certifications. It must meet specific design codes and guidelines set by regulatory authorities to ensure compliance with safety regulations and minimize potential hazards. In summary, the specific requirements for special steel used in the nuclear waste storage industry include high strength, durability, corrosion resistance, low susceptibility to stress corrosion cracking, radiation resistance, and compliance with regulatory standards. These requirements are crucial for maintaining the safety and integrity of the storage facilities and preventing any leakage or release of radioactive materials into the environment.
Q: Can special steel be used in the chemical processing equipment manufacturing industry?
Yes, special steel can be used in the chemical processing equipment manufacturing industry. Special steel is designed to withstand extreme temperatures, corrosion, and pressure, making it an ideal material for manufacturing chemical processing equipment where these factors are prevalent. Its high strength and resistance to chemical reactions make it suitable for various applications such as reactors, storage tanks, and pipelines in the industry.
Q: How does special steel perform in high-wear applications?
Special steel performs exceptionally well in high-wear applications due to its unique composition and properties. It exhibits excellent strength, hardness, and wear resistance, allowing it to withstand extreme conditions and prolonged use without losing its integrity. Special steel's ability to resist deformation, abrasion, and corrosion makes it an ideal material for demanding applications such as cutting tools, bearings, gears, and industrial machinery components.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords