• Monolithic Refractories for Iron and Steel Industry:Mullite Based Mortar for Hot Blast Stove System 1
  • Monolithic Refractories for Iron and Steel Industry:Mullite Based Mortar for Hot Blast Stove System 2
  • Monolithic Refractories for Iron and Steel Industry:Mullite Based Mortar for Hot Blast Stove System 3
Monolithic Refractories for Iron and Steel Industry:Mullite Based Mortar for Hot Blast Stove

Monolithic Refractories for Iron and Steel Industry:Mullite Based Mortar for Hot Blast Stove

Ref Price:
$1,015.11 - 1,240.69 / m.t. get latest price
Loading Port:
China Main Port
Payment Terms:
TT or L/C
Min Order Qty:
2 MT m.t.
Supply Capability:
5000 Tons Per Month m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

General Information of Mullite Based Mortar for Hot Blast Stove

ALRE mullite based mortar for hot blast stove made as per international standards, is known for its low thermal conductivity, high refractoriness, and excellent thermal shock resistance.


 

Technical data of Mullite Based Mortar for Hot Blast Stove 

Item

High Alumina Mortar

Al2O3(%)≥

70

M.O.R. (MPa) ≥

110×24h

4

1200×3h

1300×2h

6

1400×2h

1500×2h

Grain size(%)

110×24h (≤)

1

1200×3h (≥)

50

Refractoriness () ≥

1790

Refractoriness Under Load() ≥

1550

Adhesive Time(min)

1-2

 

Production line and Packing of Mullite Based Mortar for Hot Blast Stove

 

 

 

Feature of Mullite Based Mortar for Hot Blast Stove
Excellent thermal shock resistance
Excellent mechanical strength
Low thermal conductivity
High refractoriness

 

Application of Mullite Based Mortar for Hot Blast Stove

ALRE tmullite based mortar for hot blast stove can be used widely for same material masonry.

 


Production Flow of Mullite Based Mortar for Hot Blast Stove

 Flolw of Mullite Based Mortar for Hot Blast Stove

 

 

Q: How are monolithic refractories different from traditional brick refractories?
Monolithic refractories differ from traditional brick refractories in terms of their composition and application method. While traditional brick refractories are made from individual bricks that are shaped and arranged to form a structure, monolithic refractories are a single, seamless material that is applied in a liquid or semi-liquid form and then cured or dried to form a solid mass. This allows monolithic refractories to be more versatile in terms of application, as they can be easily poured, sprayed, or troweled into complex shapes and installations. Additionally, monolithic refractories often offer better thermal insulation, higher resistance to thermal shock, and improved mechanical strength compared to traditional brick refractories.
Q: What are the common failure modes of monolithic refractories in iron and steel applications?
Monolithic refractories are widely used in iron and steel applications due to their excellent thermal shock resistance, high temperature stability, and mechanical strength. However, like any other material, they are not immune to failure. There are several common failure modes associated with monolithic refractories in iron and steel applications. 1. Spalling: Spalling is one of the most common failure modes of monolithic refractories. It refers to the detachment of refractory material from the surface due to thermal cycling, mechanical stress, or chemical reactions. Spalling can occur due to mismatched thermal expansion coefficients between the refractory and the surrounding structure, leading to cracking and subsequent detachment. 2. Erosion: Erosion is another prevalent failure mode in iron and steel applications. It occurs when the refractory material is subjected to the erosive action of molten metal, slag, or gases. The erosion can be a result of the physical impact of the flowing metal or the chemical attack by corrosive slag components. Erosion leads to the loss of refractory material, decreased lining thickness, and compromised performance. 3. Corrosion: Corrosion is a significant failure mode in iron and steel applications, particularly in contact with aggressive atmospheres or molten metal. Corrosion can result from chemical reactions between the refractory material and the corrosive agents, such as oxides, sulfides, or alkalis present in the environment. It leads to the formation of corrosion products, which can weaken the refractory lining and reduce its lifespan. 4. Thermal shock: Monolithic refractories are exposed to extreme temperature fluctuations in iron and steel applications. Rapid heating or cooling can lead to thermal shock, causing cracking and failure of the refractory material. Thermal shock can occur due to uneven heating or cooling, sudden changes in temperature, or thermal gradients within the refractory lining. 5. Abrasion: In certain iron and steel applications, monolithic refractories can be subjected to abrasive wear. This occurs when the refractory lining comes into contact with solid particles, such as metallic oxides, slags, or raw materials. The repeated impact and rubbing action of these particles can cause erosion and abrasion of the refractory material, leading to its failure. To mitigate these failure modes, proper refractory selection, installation techniques, and maintenance practices are crucial. Regular inspection, repair of damaged areas, and application of protective coatings can help extend the lifespan and performance of monolithic refractories in iron and steel applications.
Q: How do monolithic refractories perform in ladle lining applications in the iron and steel industry?
Monolithic refractories are widely used in ladle lining applications in the iron and steel industry due to their excellent performance and durability. These refractories, which are made from a single material composition, offer numerous advantages over traditional brick linings. One of the key benefits of monolithic refractories in ladle lining applications is their superior resistance to thermal shock. Ladles in the iron and steel industry are subjected to extreme temperature fluctuations during the steelmaking process, including the pouring of molten metal and the subsequent cooling. Monolithic refractories are specifically designed to withstand these rapid temperature changes without cracking or spalling, ensuring the integrity of the ladle lining. In addition to thermal shock resistance, monolithic refractories also exhibit excellent resistance to chemical attack. Ladles in the iron and steel industry are exposed to highly corrosive molten metal and slag, which can degrade the lining materials over time. However, monolithic refractories are formulated with high-quality raw materials that offer exceptional chemical stability, preventing the erosion and penetration of corrosive substances. Furthermore, monolithic refractories provide superior mechanical strength compared to traditional brick linings. This is particularly important in ladle lining applications, as the lining needs to withstand the weight of the molten metal and the mechanical stresses associated with ladle handling and transportation. Monolithic refractories have excellent load-bearing capabilities, ensuring the structural integrity of the ladle lining even under heavy loads. Another advantage of monolithic refractories is their ease of installation. Unlike brick linings that require meticulous bricklaying, monolithic refractories can be installed using various techniques, such as gunning or casting, allowing for faster and more efficient lining repairs or replacements. This reduces downtime during ladle maintenance, leading to increased productivity and cost savings for iron and steel manufacturers. Overall, monolithic refractories perform exceptionally well in ladle lining applications in the iron and steel industry. Their resistance to thermal shock and chemical attack, superior mechanical strength, and ease of installation make them an ideal choice for ensuring the longevity and reliability of ladles in steelmaking operations.
Q: How do monolithic refractories improve the efficiency of reheating furnaces in steel plants?
Monolithic refractories play a crucial role in improving the efficiency of reheating furnaces in steel plants. These refractories are specially designed to withstand high temperatures and harsh operating conditions, making them ideal for use in steel plants. One of the key ways in which monolithic refractories enhance furnace efficiency is by reducing heat loss. These refractories have excellent insulation properties, which help to minimize heat transfer from the furnace to its surroundings. As a result, less energy is wasted, and the furnace can maintain its desired temperature more efficiently. Additionally, monolithic refractories contribute to a more uniform and controlled heat distribution within the furnace. They can be easily shaped and installed to create a seamless lining, ensuring that heat is evenly distributed throughout the furnace chamber. This uniform heat distribution prevents hotspots and cold spots, leading to a more efficient heating process. Monolithic refractories also play a crucial role in minimizing downtime and maintenance requirements. Unlike traditional brick linings, which are prone to cracking and erosion, monolithic refractories offer superior resistance to wear and tear. This enhanced durability reduces the need for frequent repairs and replacements, allowing for uninterrupted furnace operation and increased overall efficiency. Furthermore, monolithic refractories contribute to improved energy efficiency by reducing fuel consumption. The superior insulation properties of these refractories help to retain heat within the furnace, reducing the amount of energy required to maintain the desired temperature. This leads to significant energy savings for steel plants, as less fuel is needed to achieve the same heating results. In conclusion, monolithic refractories significantly improve the efficiency of reheating furnaces in steel plants by reducing heat loss, ensuring uniform heat distribution, minimizing downtime and maintenance, and reducing fuel consumption. By incorporating these refractories into their furnace linings, steel plants can enhance their productivity, reduce energy costs, and improve the overall efficiency of their operations.
Q: What are the advantages of using insulating castables in the iron and steel industry?
The advantages of using insulating castables in the iron and steel industry are numerous. Firstly, insulating castables have excellent thermal insulation properties, which help to reduce heat loss during the manufacturing process. This leads to increased energy efficiency and cost savings for the industry. Additionally, insulating castables have a low thermal conductivity, meaning they can withstand high temperatures without transferring excessive heat. This is crucial in the iron and steel industry, where temperatures can reach extremely high levels. By using insulating castables, the industry can ensure the longevity and durability of its equipment and structures. Furthermore, insulating castables have good resistance to thermal shock, meaning they can withstand rapid temperature changes without cracking or breaking. This is particularly beneficial in the iron and steel industry, where the heating and cooling processes are frequent and intense. Lastly, insulating castables have a low density, making them lightweight and easier to handle and install. This not only saves time and effort during installation but also reduces the structural load on equipment and structures. Overall, the use of insulating castables in the iron and steel industry offers advantages such as improved energy efficiency, enhanced durability, resistance to thermal shock, and ease of installation.
Q: How do monolithic refractories perform in high-temperature environments?
Monolithic refractories are highly effective in high-temperature environments due to their unique characteristics. These refractories are made from a single, continuous composition, as opposed to being composed of multiple bricks or tiles. This monolithic structure provides several advantages when it comes to performance in high-temperature conditions. Firstly, monolithic refractories have excellent thermal shock resistance. This means that they can withstand rapid temperature changes without cracking or spalling. High temperatures can cause significant stress on materials, but the monolithic structure allows for better expansion and contraction, reducing the risk of damage. Additionally, monolithic refractories have high resistance to chemical attack. In high-temperature environments, there are often aggressive chemical agents present that can corrode and erode traditional refractory materials. However, the monolithic composition is usually designed to be chemically inert, providing a protective barrier against these corrosive elements. Moreover, monolithic refractories offer superior strength and durability at high temperatures. Their single composition ensures a dense and compact structure, making them less prone to cracking or breaking under extreme thermal conditions. This strength allows them to maintain their integrity and performance even in the most demanding environments. Furthermore, monolithic refractories can be easily installed and repaired. Unlike traditional refractories, which require precise brick or tile placement, monolithic materials can be poured or sprayed into place, conforming to any shape or size. This flexibility makes installation faster and more cost-effective, reducing downtime and maintenance costs. Overall, monolithic refractories excel in high-temperature environments due to their thermal shock resistance, chemical inertness, durability, and ease of installation. Their ability to withstand extreme heat and harsh conditions makes them a preferred choice for industries such as steel, cement, glass, and petrochemicals, where high temperatures are common.
Q: How do monolithic refractories withstand high temperatures in iron and steel processing?
Monolithic refractories are able to withstand high temperatures in iron and steel processing due to their unique composition and design. These refractories are made from a single, solid material as opposed to being composed of multiple layers. This monolithic structure allows for superior thermal conductivity and resistance to thermal shock. One key aspect that enables monolithic refractories to withstand high temperatures is their high melting point. These refractories are typically made from materials such as alumina, magnesia, silica, or zirconia, which have melting points well above the temperatures encountered in iron and steel processing. This ensures that the refractories do not deteriorate or melt when exposed to these extreme temperatures. Furthermore, monolithic refractories have excellent thermal insulation properties. They possess low thermal conductivity, which means they can effectively prevent heat transfer from the hot molten metal or gases to the surrounding environment. This insulation property helps to maintain high temperatures within the processing units, ensuring efficient and effective iron and steel production. Another important factor in the ability of monolithic refractories to withstand high temperatures is their resistance to thermal shock. During iron and steel processing, rapid temperature changes are common, which can cause traditional refractories to crack or spall. Monolithic refractories, however, have a more homogeneous structure and greater flexibility, allowing them to withstand these rapid temperature fluctuations without significant damage. In addition to their composition, the installation method of monolithic refractories also contributes to their ability to withstand high temperatures. These refractories are typically installed using a technique called gunning or shotcreting, which involves spraying a mixture of refractory material and water onto the surface to form a dense and solid lining. This installation method ensures a tight bond between the refractory and the substrate, enhancing the overall strength and durability of the lining. Overall, monolithic refractories are able to withstand high temperatures in iron and steel processing due to their high melting point, excellent thermal insulation properties, resistance to thermal shock, and proper installation techniques. These refractories play a crucial role in maintaining the integrity and efficiency of the processing units, allowing for the production of high-quality iron and steel products.
Q: How do monolithic refractories prevent thermal shock in the iron and steel industry?
Monolithic refractories play a crucial role in preventing thermal shock in the iron and steel industry by providing a high level of thermal insulation and resistance to extreme temperatures. Thermal shock occurs when there is a rapid and drastic change in temperature, causing stress and cracking in the refractory lining. In the iron and steel industry, where temperatures can reach several thousand degrees Celsius, the risk of thermal shock is particularly high. Monolithic refractories help prevent thermal shock by having a low thermal conductivity, which means they are able to insulate against rapid temperature changes. This insulation property allows them to withstand the extreme temperatures of the iron and steel production process without compromising their structural integrity. Furthermore, monolithic refractories are designed to have a high thermal shock resistance. This means that they can absorb and distribute the thermal stresses caused by temperature fluctuations, minimizing the risk of cracking or spalling. In addition to their thermal insulation and shock resistance properties, monolithic refractories also have excellent corrosion and erosion resistance. This is particularly important in the iron and steel industry, where the production environment is highly corrosive due to the presence of molten metals, slag, and gases. By providing a reliable and durable lining in the furnaces, ladles, and other equipment used in the iron and steel industry, monolithic refractories ensure that thermal shock is minimized. This, in turn, helps to maintain the efficiency and productivity of the production process, as well as prolong the lifespan of the equipment.
Q: What are the latest advancements in monolithic refractories for the iron and steel industry?
Some of the latest advancements in monolithic refractories for the iron and steel industry include the development of high-performance materials with enhanced thermal shock resistance, improved corrosion resistance, and increased durability. These advancements have been achieved through the incorporation of advanced additives and binders, as well as the utilization of new manufacturing techniques such as spray drying and rapid heat curing. Additionally, there have been advancements in the design of monolithic refractory shapes and installation techniques to optimize their performance and increase their lifespan in the demanding environments of the iron and steel industry.
Q: What are the recommended storage and handling practices for monolithic refractories?
The recommended storage and handling practices for monolithic refractories include storing them in a dry and covered area to prevent moisture absorption, avoiding direct contact with the ground to prevent contamination, and ensuring proper ventilation to prevent condensation. It is important to handle them with care, avoiding dropping or hitting them, and using appropriate lifting equipment when necessary. Additionally, following the manufacturer's guidelines for installation, curing, and drying processes is crucial to ensure optimal performance and longevity of the monolithic refractories.
We are an industrial enterprise of refractories integrating the scientific research, design, production and engineering service. With first-class quality of products, high-efficient and prompt after-sale service, our products are not only well sold in many domestic large steel enterprises and coking enterprises, but also widely exported to more than 23 countries and regions.

1. Manufacturer Overview

Location Henan, China
Year Established 2007
Annual Output Value Above US$ 200 Million
Main Markets North America;Asia;Western Europe;Africa;Russia;Middle East
Company Certifications ISO 9001:2008

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a) Trade Capacity
Nearest Port Tianjin
Export Percentage 20% - 30%
No.of Employees in Trade Department 10-20 People
Language Spoken: English; Chinese
b) Factory Information
Factory Size: Above 150,000 square meters
No. of Production Lines Above 10
Contract Manufacturing Installation guide, OEM Service Offered
Product Price Range High; Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords