• IPEAA Beam High Quality Hot Rolled 80MM-270MM S235JR System 1
  • IPEAA Beam High Quality Hot Rolled 80MM-270MM S235JR System 2
  • IPEAA Beam High Quality Hot Rolled 80MM-270MM S235JR System 3
IPEAA Beam High Quality Hot Rolled 80MM-270MM S235JR

IPEAA Beam High Quality Hot Rolled 80MM-270MM S235JR

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Applications:

IPEAA Beam High Quality Hot Rolled 80MM-270MM S235JR are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder'sIPEAA Beam High Quality Hot Rolled 80MM-270MM S235JR are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195 – 235

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

Chinese Standard (H*W*T)

Weight (Kg/m)

6m (pcs/ton)

Light I (H*W*T)

Weight (Kg/m)

6m (pcs/ton)

Light II (H*W*T)

Weight (Kg/m)

6M

100*68*4.5

11.261

14.8

100*66*4.3

10.13

16.4

100*64*4

8.45

19.7

120*74*5.0

13.987

11.9

120*72*4.8

12.59

13.2

120*70*4.5

10.49

15.8

140*80*5.5

16.89

9.8

140*78*5.3

15.2

10.9

140*76*5

12.67

13.1

160*88*6

20.513

8.1

160*86*5.8

18.46

9

160*84*5.5

15.38

10.8

180*94*6.5

24.143

6.9

180*92*6.3

21.73

7.6

180*90*6

18.11

9.2

200*100*7

27.929

5.9

200*98*6.8

25.14

6.6

200*96*6.5

20.95

7.9

220*110*7.5

33.07

5

220*108*7.3

29.76

5.6

220*106*7

24.8

6.7

250*116*8

38.105

4.3

250*114*7.8

34.29

4.8

250*112*7.5

28.58

5.8

280*122*8.5

43.492

3.8

280*120*8.2

39.14

4.2

280*120*8

36.97

4.5

300*126*9

48.084

3.4

300*124*9.2

43.28

3.8

300*124*8.5

40.87

4

320*130*9.5

52.717

3.1

320*127*9.2

48.5

3.4

360*136*10

60.037

2.7

360*132*9.5

55.23

3

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: What makes stainless steel stainless?

A2: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q3: Can stainless steel rust?

A3: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.


Q: What are the typical lengths of steel I-beams?
The typical lengths of steel I-beams can vary depending on the specific application and industry standards. However, common lengths range from 20 feet to 60 feet or more.
Q: How are steel I-beams repaired if damaged?
Steel I-beams are typically repaired if damaged by a process called welding. The damaged section or sections of the beam are cut out and replaced with new steel. The new piece is then welded to the existing beams, ensuring the structural integrity of the I-beam is maintained.
Q: What are the common testing methods used to verify the quality of steel I-beams?
There are several common testing methods used to verify the quality of steel I-beams. These methods ensure that the beams meet the necessary standards and specifications for strength, durability, and safety. 1. Tensile Testing: This method involves subjecting the steel I-beams to a controlled force to measure their strength and elasticity. The beams are pulled until they reach their breaking point, and the test measures the maximum amount of force the beam can withstand. This helps determine if the beams have the required tensile strength. 2. Hardness Testing: Hardness testing measures the resistance of the steel I-beam to indentation or scratching. Common methods include the Brinell, Rockwell, and Vickers tests. By using a specific indenter and applying a known force, the hardness of the material can be determined. This test helps assess the beam's ability to resist wear and deformation. 3. Impact Testing: This method evaluates the ability of the steel I-beams to withstand sudden forces or impacts. The beams are struck with a pendulum or dropped from a certain height, and the amount of energy absorbed during impact is measured. This test determines the beam's toughness and resistance to sudden loading. 4. Ultrasonic Testing: Ultrasonic testing uses high-frequency sound waves to detect any internal defects or inconsistencies within the steel I-beams. A probe is placed on the beam's surface, sending sound waves through the material. Any irregularities, such as cracks or voids, are reflected back to the probe and analyzed. This non-destructive test helps identify hidden flaws that may compromise the beam's structural integrity. 5. Visual Inspection: Visual inspection is a basic method that involves visually examining the steel I-beams for any visible defects, such as surface cracks, welding irregularities, or corrosion. Trained inspectors perform this inspection to identify any issues that may affect the overall quality of the beams. These testing methods, either used individually or in combination, ensure that steel I-beams meet the required quality standards. Proper testing helps guarantee the structural integrity, safety, and reliability of these essential construction components.
Q: Can steel I-beams be used in railway or transportation infrastructure?
Yes, steel I-beams can be used in railway or transportation infrastructure. Steel I-beams are widely used in the construction of bridges, viaducts, and other transportation infrastructure projects due to their high strength and durability. They provide excellent load-bearing capacity, allowing for the construction of long-span structures that can support heavy loads such as trains or vehicles. The use of steel I-beams ensures the stability and safety of transportation infrastructure, making them a suitable choice for railway and transportation projects.
Q: How do steel I-beams perform in high-temperature environments?
Steel I-beams perform well in high-temperature environments due to their inherent strength and heat resistance. Steel has a high melting point, which makes it suitable for withstanding elevated temperatures. In a high-temperature environment, steel I-beams retain most of their structural integrity and load-bearing capacity. However, it is important to note that steel's strength decreases as the temperature rises. At temperatures exceeding 500°C (932°F), the steel may start to lose its load-bearing capacity. Additionally, prolonged exposure to high heat can cause steel to deform or warp, which might compromise its structural integrity. Therefore, in extreme high-temperature environments, additional fire protection measures such as fire-resistant coatings or insulation may be necessary to maintain the I-beams' performance. Overall, steel I-beams are a reliable choice for use in high-temperature environments, but caution should be exercised in extreme conditions to ensure their long-term effectiveness.
Q: How do steel I-beams perform in terms of energy efficiency?
Steel I-beams are known for their strength and durability, but when it comes to energy efficiency, they may not be the most ideal choice. Steel is a good conductor of heat, which means that it can easily transfer heat from the inside to the outside of a building or vice versa. This can result in significant energy loss when it comes to heating or cooling a space. Additionally, steel production is energy-intensive, requiring large amounts of energy to extract and refine iron ore and coal to produce steel. This process contributes to greenhouse gas emissions and is not considered environmentally friendly. However, it is important to note that energy efficiency is not solely determined by the choice of I-beams, but rather the overall design and construction of a building. Proper insulation, efficient HVAC systems, and energy-efficient windows can help mitigate the impact of steel I-beams on energy efficiency. Furthermore, steel I-beams offer advantages in terms of structural integrity and design flexibility, allowing for larger open spaces and longer spans. These benefits can lead to more efficient use of materials and potentially reduced construction costs. In conclusion, while steel I-beams may not be the most energy-efficient choice, their overall impact on a building's energy efficiency can be mitigated through other design and construction measures. It is important to consider the entire building envelope and energy systems when evaluating the energy efficiency of a structure.
Q: Are steel I-beams suitable for supporting rooftop helipads?
Yes, steel I-beams are suitable for supporting rooftop helipads. They provide excellent structural strength and stability, making them a popular choice for such applications.
Q: Can steel I-beams be used for military structures?
Yes, steel I-beams can be used for military structures. Steel I-beams are commonly used in construction due to their high strength and durability. These qualities make them suitable for various military applications such as barracks, hangars, command centers, and other infrastructure. Steel I-beams provide structural stability and can withstand heavy loads, making them ideal for military structures that may need to withstand extreme weather conditions or potential attacks. Additionally, steel I-beams can be easily fabricated and assembled, allowing for quick deployment of military structures in various locations.
Q: How are steel I-beams protected against galvanic corrosion?
Steel I-beams are protected against galvanic corrosion by applying a protective coating, such as paint or galvanizing. This creates a barrier between the steel and other metals, preventing the formation of an electrolytic cell that leads to galvanic corrosion.
Q: Can steel I-beams be used in architectural designs requiring curved structures?
Yes, steel I-beams can be used in architectural designs requiring curved structures. However, they may require special fabrication techniques, such as rolling or bending, in order to achieve the desired curved shape.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords