Continue Casting Steel Bloom by Blasting Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Continue Casting Steel Bloom Manufactured by Blasting Furnace
1.Structure of Continue Casting Steel Bloom Manufactured by Blasting Furnace
Steel ingot by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill.Billet section of square, round, flat, rectangular and abnormity, etcSeveral, mainly related to shape of rolled products.Simple rolled section steel, choose close to finished product cross section of square billet or rectangular billet.rollingThe sector products such as flat steel, Angle steel, select the rectangular billet or slab.Had better profiled billet when production beams, channels, and in rolling processLines and improve the yield.The raw material of round billet is the production of seamless tube.See billet production billet production methods. is the raw material of all kinds of steel mill.Billet section of square, round, flat, rectangular and abnormity, etcSeveral, mainly related to shape of rolled products.Simple rolled section steel, choose close to finished product cross section of square billet or rectangular billet.rollingThe sector products such as flat steel, Angle steel, select the rectangular billet or slab.Had better profiled billet when production beams, channels, and in rolling processLines and improve the yield.The raw material of round billet is the production of seamless tube.See billet production billet production methods.
2.Main Features of Continue Casting Steel Bloom Manufactured by Blasting Furnace.
Continue Casting Steel Bloom Manufactured by Blasting Furnace section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Billet section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel billet by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel billet, should consider the affinities of billet, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.
3. Continue Casting Steel Bloom Manufactured by Blasting Furnace Images
4. Continue Casting Steel Bloom Manufactured by Blasting Furnace Specification
1)SIZE
2)MATERIAL GRADE
3)CHEMICAL ELEMENTS COMPOSITONS
Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: billet: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Billet section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm billet: no control; The slab: < = 15 mm Surface tilt: no more than billet section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P
The classification of the billet Mainly from the shape is divided into two kinds: Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod.
5.FAQ of Continue Casting Steel Bloom Manufactured by Blasting Furnace
We have organized several common questions for our clients,may help you sincerely:
①What kinds of the spec. of steel billet suitable to produce the section steel?
It is shade blank steel billet is better.
②Could we check the process of the producing in the steel mill?
Sure, but you must follow the instruction of the steel mills during the visiting. For safety consideration.
③How many days we should order before producing?
It depands on the detail order and situation of the steel mill, usually it is earlier, it is better.
- Q: How are steel billets used in the production of wind turbine towers?
- Steel billets are used in the production of wind turbine towers as they serve as the primary raw material. These billets are heated and then shaped into the required cylindrical or conical form, which is essential for the structural integrity of the tower. The billets are then welded together to form the tower sections, which are further assembled and erected to support the wind turbine components.
- Q: How has the demand for steel billets changed over time?
- The demand for steel billets has experienced fluctuations over time, influenced by various factors. Historically, there has been a steady growth in the demand for steel billets due to the increasing industrialization and urbanization worldwide. As construction and infrastructure projects expanded, the demand for steel billets, which serve as the raw material for various steel products, also increased. However, the demand for steel billets has not been immune to economic cycles. During periods of economic downturns, such as the global financial crisis in 2008, the demand for steel billets declined as construction and manufacturing activities slowed down. This led to a surplus of steel billets in the market, resulting in decreased prices and reduced demand from steel mills. In recent years, the demand for steel billets has been influenced by global trends and geopolitical factors. The increasing focus on sustainable development and environmental concerns has led to a growing demand for green construction materials, including steel produced from recycled sources. This has prompted steel manufacturers to adapt their production processes to meet these demands and ensure the availability of environmentally friendly steel billets. Moreover, geopolitical factors such as trade disputes and tariffs have also impacted the demand for steel billets. The imposition of tariffs on steel imports by certain countries has led to a decrease in demand for imported steel billets, while simultaneously increasing demand for domestically produced steel billets. Furthermore, the COVID-19 pandemic had a significant impact on the demand for steel billets. Lockdowns, travel restrictions, and disrupted supply chains caused a decline in construction activities and manufacturing output, leading to a decrease in demand for steel billets. However, as economies recover and governments implement stimulus measures to boost infrastructure projects, the demand for steel billets is expected to gradually rebound. In summary, the demand for steel billets has experienced fluctuations over time, influenced by economic cycles, global trends towards sustainability, geopolitical factors, and the COVID-19 pandemic. The long-term growth in demand for steel billets remains closely tied to construction and infrastructure development, making it vital for steel manufacturers to adapt to changing demands and market conditions.
- Q: How are steel billets used in the production of machinery and equipment?
- Steel billets play a crucial role in the manufacturing of machinery and equipment. They serve as the primary material from which different parts and components are formed. The production process begins by carefully selecting high-quality steel billets, which are then heated and shaped through techniques like hot rolling, forging, or extrusion. One important application of steel billets is seen in the production of machine parts, including gears, shafts, and axles. These billets are heated to a specific temperature, making them easy to manipulate and shape according to desired specifications. Once shaped, these parts undergo further processing, such as heat treatment or machining, to enhance their strength, durability, and precision. Steel billets are also extensively used in the manufacturing of heavy machinery and equipment. For example, in the construction industry, they form the foundation for the production of cranes, excavators, and bulldozers. By molding and shaping these billets into various structural components, the necessary strength and stability are provided for these equipment to perform arduous tasks. Additionally, steel billets find application in the production of industrial machinery, such as turbines, compressors, and pumps. Through intricate shaping, these billets acquire high strength, corrosion resistance, and the ability to withstand extreme operating conditions. The properties of steel, such as its high strength, durability, and versatility, make it an ideal material for the manufacturing of machinery and equipment. Steel billets act as the starting point for the production process, enabling manufacturers to create complex and dependable components that are vital for the operation of machinery and equipment in diverse industries.
- Q: How are steel billets used in the manufacturing of automotive chassis?
- Steel billets are an integral component in the manufacturing of automotive chassis due to their strength and durability. A steel billet is a semi-finished product that is obtained through the process of casting molten steel into a rectangular shape. These billets serve as the raw material for the fabrication of various automotive components, including chassis. The automotive chassis is the structural framework that supports the weight of the vehicle and provides stability and strength. It is responsible for bearing the load and impacts encountered during driving. Steel billets are used to create the main frame of the chassis, which forms the backbone of the vehicle. The steel billets are first heated and then passed through a series of rolling mills to shape them into the desired form, such as I-beams or C-channels, depending on the specific design requirements. This process helps to increase the strength and rigidity of the billets, making them suitable for the demanding conditions encountered by the chassis. Once the steel billets are formed into the desired shape, they are then welded together to create the chassis structure. The joints are carefully welded using various techniques like arc welding or laser welding to ensure a solid and reliable connection. This welding process ensures that the chassis can withstand the stresses and forces experienced during operation, such as acceleration, braking, and cornering. The use of steel billets in the manufacturing of automotive chassis offers several advantages. Steel is known for its high tensile strength, which allows it to withstand heavy loads and impacts without deforming or failing. It also has excellent fatigue resistance, ensuring that the chassis can withstand repeated stress cycles without compromising its structural integrity. Moreover, steel is readily available, cost-effective, and easily recyclable, making it a preferred choice for automotive manufacturers. It also provides excellent corrosion resistance, which is crucial for vehicles exposed to various weather conditions and road environments. In conclusion, steel billets play a crucial role in the manufacturing of automotive chassis by providing the necessary strength and durability. They are shaped and welded to form the main frame, which supports the weight and provides stability to the vehicle. The use of steel billets ensures that the chassis can withstand the demanding conditions of driving, ensuring the safety and performance of the vehicle.
- Q: What are the different welding techniques used for steel billets?
- There are several different welding techniques that can be used for steel billets, depending on the specific requirements and desired outcome of the project. Some of the most commonly used techniques include: 1. Shielded Metal Arc Welding (SMAW): Also known as stick welding, SMAW is a versatile and widely used welding technique. It involves using a consumable electrode coated in flux, which provides a shielding gas to protect the weld pool from atmospheric contamination. SMAW can be used for both thick and thin steel billets and is suitable for various applications. 2. Gas Metal Arc Welding (GMAW): GMAW, also known as MIG (Metal Inert Gas) welding, is a popular technique for welding steel billets. It uses a continuous wire electrode and a shielding gas to protect the weld pool. GMAW is known for its high productivity and is often used for welding thin to medium steel billets. 3. Flux-Cored Arc Welding (FCAW): FCAW is similar to GMAW but uses a tubular electrode filled with flux instead of a solid wire. The flux provides a shielding gas and can also contain additional alloying elements. FCAW is commonly used for welding thick steel billets and in outdoor or windy environments where shielding gas could be easily blown away. 4. Gas Tungsten Arc Welding (GTAW): GTAW, also known as TIG (Tungsten Inert Gas) welding, is a precise and versatile technique frequently used for high-quality welds on steel billets. It utilizes a non-consumable tungsten electrode and a separate filler material if needed. GTAW produces clean and precise welds but is slower compared to other techniques. 5. Submerged Arc Welding (SAW): SAW is a welding process that involves the formation of an arc between a continuously fed wire electrode and the steel billet. The arc is shielded by a granular flux, which also provides additional alloying elements and protects the weld pool. SAW is commonly utilized for welding thick steel billets, such as in the manufacturing of large structures or pipes. Each of these welding techniques has its advantages and disadvantages, and the choice of technique depends on factors such as the type and thickness of the steel billet, desired weld quality, productivity, and environmental conditions. It is crucial to select the appropriate welding technique and ensure proper training and safety precautions are followed to achieve successful and durable welds on steel billets.
- Q: What are the different types of steel billets used in the manufacturing industry?
- There are several different types of steel billets used in the manufacturing industry, each with its own unique properties and qualities. Some of the most common types include: 1. Carbon Steel Billets: These are the most widely used type of steel billets and are made primarily from iron and carbon. They are known for their high strength and durability and are used in a variety of applications, including construction, automotive, and machinery manufacturing. 2. Alloy Steel Billets: Alloy steel billets are made by adding various alloying elements to carbon steel, such as manganese, nickel, chromium, and molybdenum. This results in improved properties such as increased strength, hardness, and resistance to corrosion. They are often used in the production of high-strength components and machinery parts. 3. Stainless Steel Billets: Stainless steel billets are made from iron, chromium, and other alloying elements, such as nickel and molybdenum. They are highly resistant to corrosion and staining and are commonly used in the manufacturing of kitchen appliances, automotive parts, and medical equipment. 4. Tool Steel Billets: Tool steel billets are specifically designed for use in the production of tools, dies, and molds. They have high hardness, wear resistance, and toughness, making them ideal for applications that require cutting, shaping, or molding materials. 5. Micro-Alloyed Steel Billets: These billets contain small amounts of alloying elements, such as vanadium, niobium, or titanium. They are used to improve the strength and toughness of the steel, making them suitable for structural applications in industries such as construction and transportation. It's important to note that these are just a few examples of the different types of steel billets used in the manufacturing industry. There are many other specialized types available, each tailored to meet specific requirements for different applications and industries.
- Q: How are steel billets used in the manufacturing of mining components?
- Steel billets are used in the manufacturing of mining components as raw material that is shaped and machined to create various parts and equipment needed in the mining industry. These billets are typically heated, rolled, and then forged or machined to form components such as gears, shafts, and structural parts that are essential for mining machinery and equipment to function efficiently and withstand the harsh conditions of mining operations.
- Q: How are steel billets used in the manufacturing of agricultural machinery parts?
- Steel billets are an important raw material in the manufacturing of agricultural machinery parts. These billets are essentially semi-finished steel products that are used as a starting point for various manufacturing processes. Firstly, steel billets are shaped into specific forms using various techniques such as casting, rolling, or extrusion. These processes help transform the solid billets into desired shapes, such as bars, rods, or sheets, which are then used as base materials for agricultural machinery parts. Once the billets are shaped, they are further worked upon through machining, cutting, and welding processes to create specific components for agricultural machinery. For example, billets can be machined into shafts, gears, or axles that are essential for the functioning of these machinery parts. Moreover, the strength and durability of steel billets make them suitable for applications in heavy machinery like tractors, combines, or harvesters. Agricultural machinery parts made from steel billets possess high tensile strength, resistance to wear and tear, and can withstand the demanding conditions encountered in the agricultural sector. In addition, steel billets can be heat-treated to enhance their mechanical properties, such as hardness or toughness, making them more robust and capable of withstanding heavy loads and extreme conditions. This makes them ideal for agricultural machinery parts that often face intense forces during operation. Furthermore, steel billets can be used in the manufacturing of precision components, such as bearings or bushings, which are crucial for smooth and efficient operation of agricultural machinery. The dimensional accuracy and consistency of steel billets ensure that these precision parts fit perfectly and function effectively. Overall, steel billets play a vital role in the manufacturing of agricultural machinery parts. Their versatility, strength, and ability to be shaped and processed make them an essential material in producing components that can withstand the demanding and challenging conditions of the agricultural industry.
- Q: Use medium frequency furnace (1 million 500 thousand volt ampere) to produce 1 ton cast steel blank, how much kilowatt hour is consumed?
- This depends on the intermediate frequency furnace voltage level and inverter efficiency, the general high voltage will save power, generally 550-700 range, details can refer to wcdlsb site medium frequency furnace data
- Q: How are steel billets used in the manufacturing of pumps and compressors?
- Steel billets are used in the manufacturing of pumps and compressors as raw material for forging or machining various components such as impellers, casings, and shafts. These billets are shaped and processed into specific parts, ensuring the strength, durability, and performance required for these industrial equipment.
Send your message to us
Continue Casting Steel Bloom by Blasting Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords