Brick Gpattern PPGI steel Coil
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 500000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Brick Gpattern PPGI steel Coil
Description of Brick Gpattern PPGI steel Coil
Product | PPGI/PPGL |
Capacity | 5,000 tons/month |
Base material | Hot dipped galvanized steel |
Thickness | 0.2-2.0mm |
Width | 600-1250mm(according to your need) |
Coil Weight | 3-6tons |
Quality | SGCC, DX51D |
Color | RAL No. or customers samples’ color |
Zinc-coating | 30g/m2-180g/m2 |
Coil ID | 508mm/610mm |
Technique | Cold rolled—hot dipped galvanized—color coated |
Painting | Top painting:15~25μm |
Back painting: 6~10μm | |
Tolerance | Thickness: +/-0.02mm |
Width:+/-2mm | |
Shipment time | within 15-45 workdays |
Payment | T/T, L/C at sight |
Packing | Standard export packing |
The special order can be negotiated. |
Application of Brick Gpattern PPGI steel Coil
APPLICATION OF OUR PREPAINTED STEEL | ||||||||||
Construction | Outside | Workshop,agricultural warehouse,residential precast unit | ||||||||
corrugated roof,roller shutter door,rainwater drainage pipe,retailer booth | ||||||||||
Inside | Door,doorcase,light steel roof stucture,folding screen,elevator,stairway,ven gutter,Construction Wall | |||||||||
Electrical applicance | Refrigerator,washer,switch cabnet,instrument cabinet,air conditioning,micro-wave owen,bread maker | |||||||||
Fuiniture | Central heating slice,lampshade,chifforobe,desk,bed,locker,bookself | |||||||||
Carrying trade | Exterior decoration of auto and train,clapboard,container,isolation lairage,isolation board | |||||||||
Qthers | Writing panel,garbagecan,billboard,timekeeper,typewriter,instrument panel,weight sensor,photographic equipment |
Products Show of Brick Gpattern PPGI steel Coil
Product Advantages
1.With nearly 20 years experience in prepainted steel, accommodate different marketdemands. | ||||||||||||||
2.'Quality first, service first' is our business aim; 'The good faith get respect,cast quality market' is our Business philosophy . | ||||||||||||||
3.Having two series producttion line,with the abbual production capacity of 240000 tons. | ||||||||||||||
4.Exceed International ISO9001:2008&ISO14001:2004 quality and environmental standards | ||||||||||||||
5.Meet with ROHS standard |
Company Information
CNBM International Corporation is the most important trading platform of CNBM group.
Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.
F A Q
1, Your advantages?
professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale
2, Test & Certificate?
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem
3, Factory or Trading Company?
CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.
4, Payment Terms?
30% TT as deposit and 70% before delivery.
Irrevocable L/C at sight.
5, Trading Terms?
EXW, FOB, CIF, FFR, CNF
6, After-sale Service?
CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.
For any problem, please kindly contact us at any your convenient time.
We'll reply you in our first priority within 24 hours.
- Q: How does special steel contribute to the renewable energy equipment industry?
- Special steel plays a crucial role in the renewable energy equipment industry as it offers high strength, durability, and corrosion resistance, making it suitable for demanding applications. It is used in the manufacturing of wind turbines, solar panels, and hydroelectric power systems, ensuring the reliability and longevity of these equipment. Additionally, special steel enables the production of lighter and more efficient components, enhancing the overall performance and energy conversion efficiency of renewable energy systems.
- Q: How does special steel contribute to the construction sector?
- Special steel contributes to the construction sector by providing enhanced strength, durability, and corrosion resistance to various structural components. Its unique properties enable the construction of high-rise buildings, bridges, and infrastructure projects that can withstand extreme conditions and last for decades. Additionally, special steel offers flexibility in design, allowing for innovative and efficient construction techniques.
- Q: How is special steel used in the production of gears?
- Special steel is commonly used in the production of gears due to its superior strength, durability, and resistance to wear and fatigue. The high-quality properties of special steel allow gears to withstand heavy loads, high speeds, and harsh operating conditions, ensuring reliable and efficient performance. Additionally, special steel can be heat treated to optimize its hardness and toughness, further enhancing gear performance and extending their lifespan.
- Q: What are the environmental impacts of special steel production?
- The environmental impacts of special steel production include air pollution from the combustion of fossil fuels used in the production process, water pollution from the discharge of wastewater containing heavy metals and chemicals, and land degradation from mining activities to extract raw materials. Additionally, the high energy intensity of steel production contributes to greenhouse gas emissions, contributing to climate change.
- Q: How is martensitic steel used in knife making?
- Martensitic steel is commonly used in knife making due to its high hardness and excellent edge retention properties. Its ability to be heat treated and tempered makes it ideal for creating sharp and durable knife blades. The steel's fine grain structure allows for precise and detailed work, resulting in high-quality and long-lasting knives.
- Q: How does hot rolling affect the microstructure of special steel?
- Hot rolling, a metalworking process, involves heating steel above its recrystallization temperature and passing it through rollers to reduce thickness. This process significantly affects the microstructure of special steel. When steel is hot rolled, the high temperature prompts the grains to recrystallize, eliminating defects and creating a more uniform and refined grain structure. This leads to smaller, equiaxed grains, which enhance the steel's mechanical properties. Furthermore, hot rolling encourages the formation of microstructural features like dislocation cells and subgrains. These features increase the steel's strength and toughness, making it suitable for applications requiring high performance and durability. Moreover, hot rolling can cause certain alloying elements to precipitate within the steel. These precipitates play a crucial role in enhancing specific properties such as corrosion resistance or high-temperature strength. Overall, hot rolling profoundly impacts the microstructure of special steel. It refines the grain structure, promotes beneficial microstructural features, and facilitates the precipitation of alloying elements. These changes contribute to improved mechanical properties and performance, making hot rolled steel a preferred choice in industries like automotive, aerospace, and construction.
- Q: What are the factors affecting the machinability of special steel?
- The machinability of special steel can be influenced by a variety of factors. 1. The composition of special steel plays a significant role in its machinability. Certain alloying elements, such as sulfur and lead, can enhance machinability by creating free-cutting properties. Conversely, elements like chromium and nickel can make the steel more difficult to machine. 2. Machinability can also be affected by the hardness of the special steel. As the hardness increases, the steel becomes more challenging to machine. Harder steel requires higher cutting forces, which can lead to increased tool wear and slower machining speeds. 3. The microstructure of special steel, including grain size and distribution, can have an impact on machinability. Fine-grained steels generally exhibit better machinability compared to coarse-grained ones. Additionally, the presence of certain phases, such as carbides, can pose challenges during machining. 4. The heat treatment process applied to special steel can influence its machinability. Certain heat treatments, such as annealing or stress relieving, can improve machinability by reducing hardness and internal stresses. Conversely, hardening treatments can increase hardness, making the steel more difficult to machine. 5. Machinability can also be affected by the choice of cutting conditions. Factors such as cutting speed, feed rate, and depth of cut need to be optimized to balance productivity and tool life. Inadequate cutting conditions can result in excessive tool wear, poor surface finish, and reduced machining efficiency. 6. The selection of cutting tools is critical for achieving good machinability in special steel. The tool material must possess appropriate hardness, toughness, and wear resistance to withstand the cutting forces generated during machining. The tool geometry, including rake angle and relief angle, also influences chip formation and heat dissipation, thereby impacting machinability. 7. Proper lubrication and cooling methods are essential for achieving good machinability. Lubricants help reduce friction and heat generation during machining, while cooling methods, such as flood cooling or misting, can dissipate heat and prolong tool life. Insufficient lubrication or cooling can result in increased tool wear, surface finish issues, and reduced machinability. In conclusion, achieving improved machinability and productivity in machining special steels requires a comprehensive understanding and optimization of factors related to composition, microstructure, heat treatment, cutting conditions, tooling, and cooling methods.
- Q: How is corrosion-resistant stainless tool steel used in the production of food processing equipment?
- Corrosion-resistant stainless tool steel is used in the production of food processing equipment due to its ability to withstand exposure to moisture, chemicals, and high temperatures. This type of steel prevents rusting and corrosion, ensuring the equipment remains hygienic and safe for food processing. It is commonly used for manufacturing blades, cutters, and other components that come into direct contact with food. Additionally, its durability and strength make it ideal for withstanding the rigorous demands of food processing operations, enhancing the equipment's longevity and performance.
- Q: What are the main characteristics of pressure vessel steel forgings?
- Pressure vessel steel forgings possess several key features that render them suitable for utilization in pressure vessels. Firstly, these forgings are renowned for their exceptional strength and toughness. This attribute is of utmost importance as pressure vessels typically encounter significant internal pressure, necessitating steel capable of withstanding such force without deformation or rupture. Meticulous design and manufacturing ensure that the forgings possess the requisite strength and toughness to endure these pressures. Secondly, pressure vessel steel forgings exhibit remarkable resistance to corrosion. Given that pressure vessels frequently house corrosive fluids or gases, it becomes imperative for the steel employed in their construction to possess corrosion resistance. This feature guarantees the durability and dependability of the pressure vessel. The steel forgings are often crafted with specific alloying elements that enhance their resistance to corrosion. A further notable characteristic of pressure vessel steel forgings lies in their ability to retain their mechanical properties at elevated temperatures. Pressure vessels may be subjected to heightened temperatures due to the nature of the processes or fluids they contain. The forgings are designed to maintain their strength and toughness even in these high-temperature conditions, thereby ensuring the safety and reliability of the pressure vessel. Moreover, pressure vessel steel forgings typically undergo stringent quality control measures during their manufacturing process. This is essential to ensure that the forgings meet the prescribed standards and specifications for pressure vessel applications. The manufacturing process incorporates comprehensive inspections, testing, and documentation to guarantee compliance with the necessary quality and safety requirements. In summary, the primary characteristics of pressure vessel steel forgings encompass high strength and toughness, exceptional corrosion resistance, the ability to endure high temperatures, and stringent quality control measures. These attributes render pressure vessel steel forgings ideal for utilization in pressure vessels, providing the requisite strength, reliability, and safety demanded by such applications.
- Q: Can special steel be used in the printing industry?
- Yes, special steel can be used in the printing industry. Special steel, such as stainless steel or tool steel, can be utilized in the manufacturing of printing equipment and machinery parts. These types of steel provide excellent strength, durability, and resistance to wear and corrosion, making them suitable for various components used in printing presses, rollers, blades, and other machinery.
Send your message to us
Brick Gpattern PPGI steel Coil
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 500000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords