• Prime Quality Q195/215 CNBM Steel Billets with Competitive Price System 1
  • Prime Quality Q195/215 CNBM Steel Billets with Competitive Price System 2
  • Prime Quality Q195/215 CNBM Steel Billets with Competitive Price System 3
  • Prime Quality Q195/215 CNBM Steel Billets with Competitive Price System 4
  • Prime Quality Q195/215 CNBM Steel Billets with Competitive Price System 5
  • Prime Quality Q195/215 CNBM Steel Billets with Competitive Price System 6
Prime Quality Q195/215 CNBM Steel Billets with Competitive Price

Prime Quality Q195/215 CNBM Steel Billets with Competitive Price

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
5000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Billets

Product Description 

GRADESIZEAPPLICATION

Q195/

215

100mm*100mm*6mREBAR
120mm*120mm*6m
130mm*130mm*6m/12m
150mm*150mm*6m/12m

 

Chemical Compositon

Q195/

215

C (%)Si (%)Mn (%)P(%)S(%)
0.06-0.120.15-0.300.35-0.500.045% Max    0.045Max

 

Company Information:

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

 

 Packing & Delivery

1. Packaging: seaworthy package or as required 

2. Delivery: 35-45 days or based on quantity

 

Products Show

Prime Quality Q195/215 CNBM Steel Billets with Competitive Price

 

Workshop

Prime Quality Q195/215 CNBM Steel Billets with Competitive Price

FAQ:

1.Your advantages?

Professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent    

customer solution proposale

2. Test & Certificate?

SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3. Factory or Trading Company?

CNBM is a trading company but we have so many protocol factories and CNBM works as a trading   department

of  these factories. Also CNBM is the holding company of many factories.

4. Payment Terms?

30% TT as deposit and 70% before delivery.

Irrevocable L/C at sight.

5. Trading Terms?

EXW, FOB, CIF, FFR, CNF

6. After-sale Service?

CNBM provides the services and support you need for every step of our cooperation. We're the business

partner you can trust.

For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q: How does special steel perform in terms of creep resistance?
Special steel typically performs very well in terms of creep resistance. Due to its unique composition and heat treatment, it can withstand high temperatures and prolonged stress without deforming or failing. This makes it an excellent choice for applications that require long-term stability under extreme conditions, such as in power plants or aerospace industry.
Q: What are the different methods of improving the creep resistance of special steel?
To enhance the creep resistance of special steel, various methods can be employed. These methods aim to improve its ability to withstand high temperatures and constant stress over a long period of time. Commonly used techniques include: 1. Alloying: By adding specific elements like chromium, molybdenum, tungsten, and vanadium, the creep resistance of special steel can be significantly enhanced. These alloying elements form strong carbides or intermetallic compounds that impede dislocation movement, thereby increasing the material's strength and resistance to creep. 2. Heat treatment: Precise heat treatment techniques, such as quenching and tempering, annealing, and normalizing, can be employed to improve the creep resistance of special steel. These processes alter the microstructure of the steel, resulting in the formation of fine-grained and homogeneous structures that offer better creep resistance. Heat treatment also helps in relieving residual stresses and enhancing the overall strength of the material. 3. Grain refinement: Special steel can undergo processes that refine its grain structure, thereby improving its creep resistance. Techniques like controlled rolling, recrystallization, and severe plastic deformation can reduce the grain size and make it more uniform. This refined microstructure hinders dislocation movement and enhances the material's resistance to creep deformation. 4. Precipitation hardening: Special steel can be subjected to precipitation hardening methods, where it is heated and then rapidly cooled to induce the formation of fine precipitates. These precipitates act as barriers to dislocation movement, thereby improving the material's strength and creep resistance. 5. Surface modification: Surface modification techniques, such as shot peening, laser surface melting, and surface coatings, can be applied to increase the creep resistance of special steel. These methods improve the surface integrity, reduce roughness, and introduce compressive residual stresses, all of which contribute to enhanced creep resistance. It is important to consider the specific requirements of the application and the type of special steel being used when selecting and combining these methods. The goal is to optimize the material's microstructure, chemical composition, and surface characteristics in order to achieve the desired creep resistance and ensure long-term performance at elevated temperatures.
Q: What are the non-destructive testing methods used for special steel?
Some of the non-destructive testing methods used for special steel include ultrasonic testing, magnetic particle testing, liquid penetrant testing, and radiographic testing. These methods allow for the detection of defects, cracks, or other imperfections in the steel without causing any damage to the material itself.
Q: How is special steel used in the production of precision tools?
Special steel is used in the production of precision tools due to its unique properties such as high hardness, wear resistance, and excellent dimensional stability. These qualities make special steel ideal for manufacturing tools that require high precision, such as drills, milling cutters, and lathe tools. The use of special steel in precision tool production ensures the durability and longevity of the tools, allowing them to maintain their accuracy over time, resulting in high-quality and precise machining operations.
Q: How does special steel perform in food processing applications?
Special steel is widely used in food processing applications due to its unique properties and benefits. One of the key advantages of special steel in this industry is its exceptional corrosion resistance. Food processing involves exposure to various corrosive substances such as acids, alkalis, and salt solutions. Special steel, such as stainless steel, has a high chromium content that forms a protective oxide layer on its surface, preventing corrosion and ensuring the hygiene and safety of the processed food. Furthermore, special steel is highly durable and resistant to wear and tear. Food processing equipment often undergoes rigorous and repetitive operations, such as cutting, grinding, and mixing. Special steel's high strength and toughness allow it to withstand these demanding applications without compromising its performance or integrity. This durability ensures a longer lifespan for the equipment, minimizing downtime and maintenance costs. Special steel also offers excellent heat resistance, making it suitable for high-temperature food processing applications. It can withstand extreme temperatures without losing its mechanical properties, maintaining its structural integrity and preventing any contamination risks. Moreover, special steel is easy to clean and maintain, which is crucial in the food processing industry. Its smooth surface and non-porous nature prevent the accumulation of food particles, bacteria, and other contaminants, ensuring a high level of hygiene. Special steel is also resistant to chemical cleaning agents and can be easily sterilized, making it an ideal material for food processing equipment. In summary, special steel performs exceptionally well in food processing applications due to its corrosion resistance, durability, heat resistance, and ease of maintenance. Its properties contribute to the safety, efficiency, and longevity of food processing equipment, ensuring high-quality and hygienic food production.
Q: Can special steel be used in the production of gearboxes?
Yes, special steel can be used in the production of gearboxes. Special steel, such as alloy steel or tool steel, offers higher strength, durability, and wear resistance, making it suitable for use in gearboxes that require heavy-duty performance and efficient power transmission.
Q: What are the main applications of special steel in the semiconductor industry?
Special steel finds various applications in the semiconductor industry, primarily in the manufacturing of critical components such as chambers, wafer carriers, and vacuum systems. Due to its high strength, corrosion resistance, and thermal stability, special steel is ideal for creating these parts that require durability and precision in maintaining the controlled environments necessary for semiconductor production. Additionally, special steel is also used in the fabrication of cutting tools and molds for semiconductor device manufacturing, further highlighting its importance in this industry.
Q: What are the different surface cleaning methods for special steel?
There are several surface cleaning methods for special steel, including mechanical cleaning, chemical cleaning, and electrochemical cleaning. Mechanical cleaning involves using abrasive materials or tools to physically remove dirt, rust, or other contaminants from the steel's surface. Chemical cleaning involves using specialized cleaning agents or solvents to dissolve and remove any unwanted substances. Electrochemical cleaning utilizes an electric current and specific electrolytes to remove dirt and corrosion from the steel's surface. Each method has its advantages and is chosen based on the specific requirements and condition of the special steel.
Q: How is special steel tested for quality control?
Special steel is tested for quality control through a series of rigorous inspections and tests. These can include chemical composition analysis, mechanical property testing, non-destructive testing, and dimensional inspections. Additionally, special steel may undergo heat treatment testing, surface quality evaluations, and microstructure examinations to ensure it meets the required standards and specifications.
Q: What are the key differences between special steel and tool steel?
Special steel and tool steel possess distinct characteristics and uses. Here are the main disparities: 1. Composition: Special steel encompasses a diverse range of steel alloys tailored for specific applications. Stainless steel, high-strength alloy steel, and heat-resistant steel are some examples. In contrast, tool steel refers to a particular type of special steel designed for tool, die, and mold production. Tool steel typically contains higher levels of carbon and other alloying elements like chromium, vanadium, or tungsten, which enhance its hardness, wear resistance, and toughness. 2. Hardness and wear resistance: Tool steel stands out for its exceptional hardness and wear resistance, making it ideal for cutting, shaping, and forming materials. It can endure high temperatures and resist deformation, ensuring the longevity of tools and dies. On the other hand, special steel may not possess the same level of hardness and wear resistance as tool steel. Its properties vary depending on the specific alloy and application. Special steel alloys may prioritize other properties such as corrosion resistance or strength. 3. Manufacturing processes: Tool steel often undergoes specialized manufacturing processes like hot working, cold working, or heat treatment to achieve the desired properties. The production of tool steel involves precise temperature control and cooling rates to attain the necessary hardness and toughness. In contrast, special steel may undergo various manufacturing processes depending on the desired properties, such as forging, casting, or heat treatment. 4. Applications: Tool steel finds primary application in the production of tools, dies, and molds used for cutting, shaping, and forming materials. Industries such as automotive, aerospace, and machinery commonly utilize tool steel. Conversely, special steel has a wide range of applications depending on the specific alloy and properties. It can be employed in industries such as construction, energy, and manufacturing, where specific properties like corrosion resistance, heat resistance, or strength are required. To summarize, the key distinctions between special steel and tool steel lie in their composition, hardness, wear resistance, manufacturing processes, and applications. While special steel encompasses various steel alloys with specific properties, tool steel is a specific type of special steel tailored for tooling applications. Tool steel is characterized by its exceptional hardness and wear resistance, making it suitable for cutting and shaping materials. On the other hand, special steel can possess a broader range of properties depending on the specific alloy and application.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords