Swivel Plate SV4701
- Loading Port:
- Guangzhou
- Payment Terms:
- TT or LC
- Min Order Qty:
- 200 pc
- Supply Capability:
- 40000 Pieces Per Month pc/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Quick Details of Swivel Plate SV4701:
Type: Chair Mechanism Place of Origin: Guangdong, China (Mainland) Packing: 6 pcs /arton material: A3 steel plate net weight: 6kg/ pcs
H S Code: 9403900090 size: diameter 610mm surface: black powder coated name: recline chair swivel base
Specifications of Swivel Plate SV4701:
1.Competetive price
2.Material:steel, long serivice life
3.10''swivel inside, Thickness 3.0mm heavy duty
recline chair swivel base
Function: this device is installed in recline chair for rotate
Material: Steel
Thickness: 3.0mm
Weight: 6kgs/ pc
Product Photos:
Packaging & Delivery:
Packaging Details: 6pcs /carton, size:62*62*27cm, GW:36.5kg
Delivery Detail: 12-15 days for quantity 600 pcs
- Q:How does special steel perform in terms of creep resistance at elevated temperatures?
- Special steel is known for its excellent performance in terms of creep resistance at elevated temperatures. Creep refers to the gradual deformation of a material under constant stress at high temperatures over an extended period. Special steel, specifically designed to withstand high temperatures, demonstrates a remarkable ability to resist creep and maintain its structural integrity. The unique composition of special steel, which includes various alloying elements such as chromium, molybdenum, and vanadium, contributes to its exceptional creep resistance. These alloying elements enhance the steel's high-temperature strength, increase its resistance to deformation, and inhibit the formation of detrimental microstructural changes that can occur during creep. Furthermore, special steel undergoes specific heat treatment processes, such as quenching and tempering, which further enhance its creep resistance. These processes help refine the steel's microstructure, resulting in a fine-grained and homogenous material that can resist deformation even under prolonged exposure to high temperatures. The superior creep resistance of special steel makes it a preferred choice in various industries that operate under high-temperature conditions, such as power generation, petrochemical, and aerospace. It allows for extended service life, reduced maintenance, and increased safety in critical applications where failure due to creep deformation could have severe consequences. In summary, special steel exhibits exceptional performance in terms of creep resistance at elevated temperatures. Its unique composition, including alloying elements and specific heat treatment processes, enables it to resist deformation and maintain its structural integrity even under prolonged exposure to high temperatures.
- Q:What are the main challenges in welding special steel?
- The main challenges in welding special steel typically include issues such as high heat input requirements, susceptibility to cracking, and the need for precise preheating and post-weld heat treatment. Additionally, the presence of alloying elements in special steel can make it more difficult to achieve the desired mechanical properties and require careful selection of filler materials.
- Q:How does special steel perform in magnetic fields?
- Special steel typically has low magnetic permeability, which means it is not strongly affected by magnetic fields. This property makes it useful in applications where magnetic interference needs to be minimized, such as in electrical transformers or magnetic resonance imaging (MRI) machines.
- Q:How does special steel contribute to the packaging aftermarket industry?
- The packaging aftermarket industry greatly benefits from the use of special steel, which provides various advantages that enhance the efficiency and quality of packaging processes. Firstly, special steel is renowned for its exceptional strength and durability, making it ideal for the manufacturing of packaging machinery and equipment. This durability ensures that the machinery can withstand the demanding requirements of the industry, resulting in improved reliability and less downtime. Additionally, special steel boasts excellent resistance to corrosion, making it highly suitable for packaging applications that involve exposure to moisture, chemicals, or extreme temperatures. This corrosion resistance extends the lifespan of packaging equipment and prevents degradation, ultimately reducing maintenance costs and enhancing the overall efficiency of the packaging aftermarket industry. Moreover, special steel can be customized to meet specific needs, allowing for the production of tailored packaging solutions. This flexibility and versatility enable manufacturers to create innovative designs that enhance product protection, optimize space utilization, and improve transportation logistics. For example, special steel can be used to manufacture lightweight yet strong packaging materials, reducing shipping costs and minimizing the environmental impact associated with packaging waste. Furthermore, special steel possesses excellent machinability and weldability, making it easy to fabricate intricate packaging components with high precision. This capability enables manufacturers to produce packaging solutions that perfectly fit specific product dimensions, ensuring optimal protection during transit. In conclusion, special steel plays a vital role in the packaging aftermarket industry by offering strength, durability, corrosion resistance, customization options, and excellent machinability. These qualities contribute to the overall efficiency, reliability, and quality of packaging processes, benefiting both manufacturers and consumers.
- Q:What industries use special steel?
- There are several industries that rely on special steel for their operations. One of the significant sectors that utilize special steel is the automotive industry. Special steel is used in the manufacturing of various automotive components such as engine parts, transmission systems, and chassis components. The high strength, durability, and corrosion resistance of special steel make it ideal for the demanding conditions that automotive components are subjected to. The aerospace industry is another sector that extensively uses special steel. Special steel is used in the construction of aircraft structures, engine components, and landing gear systems. The lightweight yet strong properties of special steel are crucial in ensuring the safety and performance of aircraft. The energy sector also relies on special steel for its operations. Special steel is used in the production of equipment for oil and gas exploration, including drilling rigs, pipelines, and offshore platforms. The high-strength and corrosion-resistant properties of special steel are essential in withstanding the harsh operating conditions in the energy industry. The construction industry is another significant consumer of special steel. It is used in the manufacturing of structural components, reinforcing bars, and precast concrete products. Special steel provides the necessary strength and durability required for building structures that can withstand various environmental conditions and loads. The manufacturing and machinery industry also use special steel in the production of heavy machinery, industrial equipment, and machine tools. The high strength, wear resistance, and heat resistance properties of special steel make it suitable for the demanding requirements of these applications. Additionally, the defense and military industry rely on special steel for the production of military vehicles, weapons, and armor. Special steel's ability to withstand extreme conditions and provide protection makes it a critical material in this industry. Overall, special steel finds its applications in various industries due to its exceptional properties of strength, durability, corrosion resistance, and heat resistance. Its usage spans across automotive, aerospace, energy, construction, manufacturing, and defense sectors, where reliability and performance are paramount.
- Q:Can special steel be used in electrical applications?
- Yes, special steel can be used in electrical applications. Special steel, such as electrical steel or transformer steel, is specifically designed to have low electrical resistance and high magnetic permeability, making it ideal for use in electrical equipment like transformers, motors, and generators.
- Q:What are the different methods for improving the heat resistance of special steel?
- There are various techniques available to enhance the heat resistance of special steel. These techniques comprise: 1. Alloying: Enhancing the heat resistance of steel can be achieved by alloying it with specific elements. The addition of chromium, nickel, or molybdenum, for instance, significantly augments the steel's ability to withstand high temperatures. 2. Heat treatment: Heat treatment processes like annealing, quenching, and tempering can be employed to enhance the heat resistance of special steel. These processes refine the steel's microstructure and enhance its mechanical properties, including heat resistance. 3. Surface modification: The heat resistance of special steel can be improved by applying specialized coatings or surface treatments. Processes such as nitriding, carburizing, or ceramic coating create a protective layer on the steel's surface, preventing oxidation and enhancing its ability to withstand high temperatures. 4. Grain refinement: Heat resistance can be improved by controlling the grain size of the steel through processes like grain refinement or recrystallization. Smaller grain sizes reduce the diffusion of atoms within the material, making it more resistant to high temperatures. 5. Precipitation hardening: Precipitation hardening involves the formation of small particles within the steel matrix, strengthening the material and improving its resistance to heat. This technique requires a specific heat treatment process to enable the formation of these particles. 6. Controlled cooling: Optimizing the cooling process after heat treatment can also enhance the heat resistance of special steel. By controlling the cooling rate, the formation of unwanted phases or microstructural defects can be minimized, ensuring better heat resistance. 7. Material selection: Selecting the appropriate type of special steel with inherent high heat resistance properties is another method to improve heat resistance. Stainless steel, tool steel, or superalloys, for instance, are renowned for their excellent heat resistance and are often chosen for applications involving high temperatures. It is important to note that the choice of the suitable method or combination of methods for enhancing heat resistance depends on the specific requirements and limitations of the application.
- Q:What is the impact of carburizing on the properties of special steel?
- Carburizing has a significant impact on the properties of special steel. It improves the surface hardness and wear resistance of the steel by introducing carbon into its surface layer. This process creates a hardened case while maintaining a tough core, enhancing the steel's overall strength and durability. Additionally, carburizing enhances the steel's ability to withstand high temperatures and increases its resistance to corrosion. Overall, carburizing plays a crucial role in enhancing the mechanical properties of special steel, making it suitable for various applications in industries such as automotive, aerospace, and manufacturing.
- Q:How does the hardness of special steel affect its machinability?
- The hardness of special steel has a significant impact on its machinability. In general, as the hardness of the steel increases, its machinability decreases. Machinability refers to the ease with which a material can be machined or shaped using various machining processes such as cutting, drilling, or milling. Hardness is a measure of a material's resistance to indentation or scratching. It is typically measured using the Rockwell hardness scale or the Brinell hardness test. Special steel, which is known for its high strength and durability, often has a higher hardness compared to other types of steel. When machining special steel, a harder material poses challenges for several reasons. Firstly, harder materials are more difficult to cut, as they require higher cutting forces and generate more heat during the machining process. This can lead to increased tool wear and shorter tool life, resulting in higher production costs. Secondly, hard steel tends to have lower ductility and toughness, making it more prone to cracking or chipping during machining. This can lead to poor surface finish, dimensional inaccuracies, and even component failure. Moreover, the increased hardness of special steel also affects chip formation. Harder materials tend to produce shorter and more segmented chips, which can cause issues with chip evacuation and tool clogging. This can further hinder the machining process and affect the overall productivity. To improve the machinability of hard special steel, various strategies can be employed. The selection of appropriate cutting tools with specific geometries and coatings designed for hard materials is crucial. Additionally, optimizing cutting parameters such as cutting speed, feed rate, and depth of cut can help reduce the negative effects of hardness on machinability. In conclusion, the hardness of special steel has a direct impact on its machinability. As the hardness increases, the machinability decreases due to increased cutting forces, higher tool wear, reduced ductility, and chip formation challenges. However, with proper tool selection and optimization of cutting parameters, the machinability of hard special steel can be improved, enabling efficient and cost-effective machining processes.
- Q:What are the challenges in surface treating special steel?
- Some of the challenges in surface treating special steel include achieving uniform and consistent coatings, ensuring adhesion of the coating to the steel substrate, overcoming the high hardness of the steel, preventing distortion or warping during the treatment process, and managing the potential for thermal degradation or oxidation. Additionally, the presence of unique alloying elements in special steel may require specialized treatment techniques to achieve the desired surface properties.
1. Manufacturer Overview |
|
---|---|
Location | Guangdong, China |
Year Established | 1996 |
Annual Output Value | US$ 5 to US$ 10 Million |
Main Markets | 40.00% Domestic Market 10.00% Eastern Asia 10.00% Eastern Europe 8.00% Southeast Asia 8.00% South America 5.00% South Asia 5.00% Southern Europe 5.00% North America |
Company Certifications | Test report for 3 section slide |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | Shunde, Huangpu, Shenzhen |
Export Percentage | 61% - 70% |
No.of Employees in Trade Department | 3-5 People |
Language Spoken: | English, Chinese, Spanish, Japanese |
b)Factory Information | |
Factory Size: | 1,000-3,000 square meters |
No. of Production Lines | 3 |
Contract Manufacturing | OEM Service Offered Design Service Offered Buyer Label Offered |
Product Price Range | Average |
Send your message to us
Swivel Plate SV4701
- Loading Port:
- Guangzhou
- Payment Terms:
- TT or LC
- Min Order Qty:
- 200 pc
- Supply Capability:
- 40000 Pieces Per Month pc/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords