• Grade 12Cr1MoVG Alloy Steel / Tubular Steel Round Bar System 1
  • Grade 12Cr1MoVG Alloy Steel / Tubular Steel Round Bar System 2
  • Grade 12Cr1MoVG Alloy Steel / Tubular Steel Round Bar System 3
  • Grade 12Cr1MoVG Alloy Steel / Tubular Steel Round Bar System 4
  • Grade 12Cr1MoVG Alloy Steel / Tubular Steel Round Bar System 5
Grade 12Cr1MoVG Alloy Steel / Tubular Steel Round Bar

Grade 12Cr1MoVG Alloy Steel / Tubular Steel Round Bar

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t
Supply Capability:
10000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar

Specifications of Round Bar

  1. 1.hot rolled black surface 

  2. 2. fine mechanical performance 

  3. 3. Delivery condition: Hot-rolled,black surface.

  4. 4. AISI/ASTM 4140,42CrMo4 Din1.7225,SCM440 JIS

 

Chemical Composition

C

Si

Mn

P

S

Cr

Mo

0.38-0.45

≤0.4

0.6-0.9

≤0.035

≤0.030

0.9-1.2

0.15-0.30

 

Our Featured Products

Alloy steel: Combination of steel / Bearing steel// Spring steel/ Cr- mo steel

GB 20Cr/ 40Cr / 42CrMo / 35CrMo/ 20CrMn/GCr15/30CrMnTi…

ASTM 5120 /5140 / 4140/ 4135/ 5152/52100…

JIS SCr420H/ SCr440/ SCM3/ SUP9/SUJ2…

 

Carbon steel: Carbon tool steel /Carbon Structural Steel

GB 20/ 35 /45/…

ASTM 1020/ 1030/1045…

JIS S20C/ S30C / S45C…

 

Usage and Applications of Round Bar

1. Chinese standard steel bar is often used where large amounts of steel need to be formed, for example as structural steel.

2. And we can use this kind of product on the performance of the mechanical parts if the demand is not very high.

3. Steel round bar is used in construction and a large number of architectural and engineering structures.

 

Packaging & Delivery of Round Bar

Packaging Detail: All goods are packed in bundle with steel strips and shipped by break bulk vessel or container (depend on target market and different ports)

Delivery Detail: 15~45 days

Trade terms: FOB, CFR, CIF

Weight: Theprice invoicing on theoretical weight basis or actual weight basis depends on customer’s request.

Shipment: The shipment of bulk break or container is depends on customer’s request and the situation of the port of destination.

Documents given: Full set of original clean on board bill of lading; Original signed commercial invoice; Original packing list; Policy of insurance; Certificate of origin and what the target market needs.

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: What makes stainless steel stainless?

A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

Q5: Can stainless steel rust?

A5: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.

Grade 12Cr1MoVG Alloy Steel / Tubular Steel Round Bar

Grade 12Cr1MoVG Alloy Steel / Tubular Steel Round Bar

Q:Can special steel be used for making springs?
Indeed, springs can be crafted using special steel. Recognized as alloy steel, special steel possesses augmented mechanical attributes like impressive tensile strength, toughness, and resistance against corrosion. Consequently, it serves as an optimal substance for the production of robust and dependable springs across diverse applications. The precise variant of special steel employed in spring production hinges upon the particular necessities of the application, be it a desired degree of flexibility or resistance against fatigue. All in all, special steel bestows extraordinary performance and endurance in the realm of spring manufacturing.
Q:What are the applications of special steel in the power generation supply chain?
Special steel has various applications in the power generation supply chain, primarily due to its high strength, corrosion resistance, and ability to withstand extreme temperatures. It is commonly used in the construction of power plant components such as turbines, boilers, and heat exchangers. Special steel is also utilized in the manufacturing of transmission towers, electrical transformers, and generator rotor shafts. Overall, its superior properties enhance the efficiency, reliability, and longevity of power generation equipment, ensuring a stable and uninterrupted energy supply.
Q:How does special steel contribute to the manufacturing of cutting tools?
Special steel plays a crucial role in the manufacturing of cutting tools due to its unique properties and characteristics. Firstly, special steel, also known as tool steel, exhibits high hardness, which allows it to withstand the tremendous forces and stress exerted during cutting operations. This hardness prevents the cutting tools from deforming or wearing out quickly, ensuring their longevity and efficiency. Additionally, special steel possesses excellent wear resistance. Cutting tools are subjected to constant friction and abrasion while in use, and the high wear resistance of special steel helps to minimize the wear and tear on the tools. This, in turn, leads to improved tool life, reducing the frequency of tool replacements and enhancing cost-effectiveness in the manufacturing process. Furthermore, special steel offers superior heat resistance. Cutting tools generate significant heat during machining operations, which can lead to thermal degradation and loss of hardness in conventional steels. However, special steel can withstand high temperatures without compromising its hardness and integrity. This heat resistance allows cutting tools to maintain their performance even under extreme heat conditions, ensuring consistent and precise cutting results. Moreover, the special steel used in cutting tool manufacturing often exhibits excellent toughness and strength. This enables the tools to endure heavy loads and impacts without fracturing or chipping. The combination of hardness, wear resistance, heat resistance, toughness, and strength provided by special steel ensures the durability and reliability of cutting tools, allowing them to perform efficiently and accurately. Overall, special steel significantly contributes to the manufacturing of cutting tools by providing the necessary properties to withstand the demanding conditions encountered during cutting operations. Its high hardness, wear resistance, heat resistance, toughness, and strength ensure that cutting tools remain sharp, durable, and efficient, thereby enhancing productivity and precision in various industries, such as automotive, aerospace, and manufacturing.
Q:What are the different international standards for special steel?
There are several international standards for special steel, including the American Society for Testing and Materials (ASTM) standards, the International Organization for Standardization (ISO) standards, and the European Standards (EN) standards. These standards define the chemical composition, mechanical properties, and testing requirements for various types of special steel, ensuring quality and consistency in their production and usage worldwide.
Q:What are the main characteristics of electrical steel?
Electrical steel, also known as silicon steel or transformer steel, offers several key features that make it suitable for use in electrical appliances and power equipment. Firstly, it possesses a high magnetic permeability, enabling efficient magnetic flux conduction and reducing energy losses in transformers, motors, and generators. Secondly, electrical steel demonstrates low core loss, encompassing hysteresis loss and eddy current loss. Hysteresis loss refers to the dissipation of energy caused by the reversal of magnetic domains within the material, while eddy current loss arises from circulating currents induced by alternating magnetic fields. The low core loss property of electrical steel ensures high energy efficiency and minimizes heat generation in electrical devices. Another significant characteristic of electrical steel is its high electrical resistivity, which diminishes the magnitude of eddy currents and further reduces energy losses in electrical equipment. Additionally, it possesses a high saturation induction, denoting its ability to reach maximum magnetic flux density. This characteristic enables transformers and motors to function at higher magnetic flux densities, resulting in more compact and efficient designs. Moreover, electrical steel exhibits high mechanical strength, essential for withstanding the stresses and vibrations encountered in electrical devices. It also demonstrates good thermal conductivity, facilitating efficient heat dissipation and enhancing the overall performance and longevity of electrical equipment. In conclusion, electrical steel boasts high magnetic permeability, low core loss, high electrical resistivity, high saturation induction, high mechanical strength, and good thermal conductivity. These properties make it an ideal material for various electrical applications, offering efficiency, reliability, and performance in power generation, transmission, and utilization.
Q:What are the applications of high-speed steel?
High-speed steel has various applications due to its exceptional properties. It is commonly used in the manufacturing of cutting tools such as drills, saw blades, milling cutters, and taps. Its high hardness and heat resistance make it suitable for machining operations on materials like steel, cast iron, and non-ferrous alloys. Additionally, high-speed steel is also used in the production of power tool bits, punches, and dies, where its wear resistance and toughness are advantageous.
Q:How does special steel compare to other materials?
Special steel is known for its exceptional strength, durability, and resistance to corrosion, making it superior to many other materials. Its unique composition and manufacturing processes result in improved performance, higher load-bearing capacity, and enhanced safety compared to other materials. Additionally, special steel offers excellent heat resistance, making it suitable for a wide range of applications, including automotive, construction, and aerospace industries.
Q:What are the different methods of surface powder coating for special steel?
Some different methods of surface powder coating for special steel include electrostatic spraying, fluidized bed coating, and flame spraying. Electrostatic spraying involves applying a charged powder to the steel surface, which is then cured in an oven. Fluidized bed coating involves dipping the steel into a bed of powder that is heated to a fluidized state, allowing the powder to adhere to the surface. Flame spraying uses a flame to melt and propel the powder onto the steel surface, creating a durable coating.
Q:Can special steel be used for making automotive engine components?
Yes, special steel can be used for making automotive engine components. Special steel is often used in the manufacturing of engine components due to its high strength, durability, and resistance to wear and corrosion. Engine components such as crankshafts, connecting rods, camshafts, and valves require materials that can withstand high temperatures, pressures, and mechanical stresses. Special steel, such as high-strength alloy steel or stainless steel, meets these requirements and provides the necessary performance characteristics for automotive engines. Additionally, special steel can offer weight reduction benefits, which can contribute to improved fuel efficiency and performance of the engine. Overall, special steel is a suitable material choice for making automotive engine components due to its exceptional mechanical properties and ability to withstand the demanding operating conditions of an engine.
Q:How does special steel contribute to the industrial machinery aftermarket industry?
By providing high-quality and durable components, special steel plays a vital role in the industrial machinery aftermarket industry. It enhances machinery performance and longevity, which is crucial in this industry. One of the main advantages of special steel is its exceptional strength and resistance to wear and tear. Regular steel components deteriorate quickly due to heavy loads, extreme temperatures, and corrosive environments. However, special steel alloys are specifically designed to withstand these harsh conditions. This ensures that machinery operates efficiently for a longer period. In addition, special steel offers excellent machinability, making it easier to manufacture intricate and precise components. This enables aftermarket manufacturers to produce replacement parts that fit perfectly into existing machinery. As a result, downtime during repairs and maintenance is minimized. Special steel's machinability also allows for customization, as it can be easily shaped and modified according to the specific requirements of different machinery models. Moreover, special steel's exceptional heat resistance makes it ideal for producing high-temperature components used in industrial machinery. These components need to withstand intense heat without losing their structural integrity. Special steel alloys possess excellent heat resistance properties, ensuring that machinery can operate at high temperatures without compromising performance or safety. Furthermore, special steel contributes to the industrial machinery aftermarket industry by providing corrosion-resistant components. Machinery in industries such as oil and gas or marine is often exposed to corrosive substances or environments. Regular steel components are susceptible to corrosion, leading to premature failure and expensive repairs. However, special steel alloys are highly resistant to corrosion, enhancing the durability and reliability of machinery in these demanding conditions. Overall, special steel's unique properties, including strength, machinability, heat resistance, and corrosion resistance, significantly contribute to the industrial machinery aftermarket industry. By utilizing special steel components, manufacturers can enhance machinery performance, durability, and longevity, reducing downtime, and improving overall operational efficiency.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords