• Bearing Steel with High Quality System 1
  • Bearing Steel with High Quality System 2
Bearing Steel with High Quality

Bearing Steel with High Quality

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Bearing Steelsat great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications: 

Our products have been used in all kinds of areas, such as aviation, aerospace, navigation, nuclear, energy, chemical industry, electronic information, petrochemical, automotive, instrument and meter, Communication ,transportation, and medical instruments, etc. Bearing ring,steel rolling mill ,machinery, 100Cr6 bearing steel ball is widely used in high-speed and low-noise bearing, bicycle, motorcycle, automobile, bags, electronics.

Product Advantages:

OKorder's Bearing Steels are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

 

Grade

AISI 52100, ASTM E52100, DIN 1.3505,JIS SUJ2, GCr15

Dimensions

Diameter: 30-60mm

Length: 2000-13000mm or as required

Shape

Round Bar

Type

Alloy Steel Bar

Delivery Condition

Black Surface

Material

Bearing Steel

Technique

Hot Rolled


First the famous 1C-1.5Cr steel from which the majority of bearings are made. Its structure is apparently well-understood and the focus is on purity in order to avoid inclusions which initiate fatigue during rolling contact. Then there is the M50 steel and its variants, from which bearings which serve at slightly higher temperatures in aeroengines are manufactured, based on secondary-hardened martensite.


Tapered roller bearing are generally used to support combined load mainly consisting of radial load. Their cups are separable for easy assembling ,During mounting and using, radial clearance and axial clearance can be adjusted and preloaded mounting can be made.

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

 

Images:


       Usage of Bearing Steel                  Usage of Bearing Steel

Q: How does the heat treatment process affect the hardness of special steel?
The heat treatment process can significantly affect the hardness of special steel. By subjecting the steel to controlled heating and cooling cycles, the microstructure of the steel can be altered, leading to changes in its hardness. Hardening, for example, involves heating the steel to a high temperature and then quenching it rapidly, resulting in a harder and more brittle material. On the other hand, tempering, which involves reheating the hardened steel at a lower temperature, can reduce the brittleness while maintaining a desirable level of hardness. Thus, the heat treatment process allows for precise manipulation of the hardness of special steel to meet specific requirements.
Q: How are nickel-based alloys used in the aerospace industry?
Nickel-based alloys are extensively used in the aerospace industry due to their superior strength, high temperature resistance, and excellent corrosion resistance properties. These alloys are commonly employed in the construction of aircraft engines, turbine blades, and exhaust systems. They help improve engine efficiency, enhance fuel economy, and ensure safe and reliable operations in extreme conditions, making them crucial for the advancement of aerospace technology.
Q: How does special steel contribute to the energy industry?
Special steel contributes to the energy industry in various ways. It is widely used in the manufacturing of turbines, generators, and other critical components for power plants. Its high strength, durability, and corrosion resistance properties make it suitable for withstanding the extreme conditions found in power generation facilities. Additionally, special steel plays a crucial role in the production of pipelines and storage tanks for the oil and gas sector, ensuring the safe and efficient transportation and storage of energy resources. Overall, special steel enhances the reliability and efficiency of energy infrastructure, supporting the growth and sustainability of the energy industry.
Q: What are the applications of special steel?
Special steel has a wide range of applications due to its unique properties and characteristics. It is commonly used in industries such as automotive, aerospace, construction, and manufacturing. Special steel is utilized for making high-strength components, tools, and machinery parts that require resistance to wear, corrosion, and extreme temperatures. Additionally, it is employed in the production of specialized equipment for oil and gas exploration, as well as in the medical field for surgical instruments and implants. Overall, special steel plays a crucial role in various sectors where durability, strength, and performance are essential.
Q: What are the requirements for special steel used in automotive parts manufacturing?
The requirements for special steel used in automotive parts manufacturing include high strength, durability, and resistance to impact and wear. It should also have excellent formability and weldability for easy shaping and joining processes. Additionally, the steel must meet specific standards for chemical composition, heat treatment, and surface finish to ensure optimal performance and safety in automotive applications.
Q: Can special steel be used in the mining equipment manufacturing industry?
Yes, special steel can be used in the mining equipment manufacturing industry. Special steel, such as wear-resistant steel, high-strength steel, or corrosion-resistant steel, is often used in the manufacturing of mining equipment due to its durability, toughness, and resistance to harsh conditions commonly encountered in mining operations. Special steel can enhance the performance and lifespan of mining equipment, making it a suitable choice for this industry.
Q: What are the different types of welding techniques used for special steel?
Special steel can be welded using various techniques depending on its specific requirements and properties. Some commonly used techniques for welding special steel include: 1. Stick welding, also known as Shielded Metal Arc Welding (SMAW), involves using a consumable electrode coated in flux to create an electric arc between the electrode and the base metal. This technique is ideal for thicker sections of special steel due to its ability to generate high heat and deep penetration. 2. Gas Metal Arc Welding (GMAW), also known as MIG welding, utilizes a continuously fed wire electrode and a shielding gas to protect the weld from atmospheric contamination. Its versatility and ability to produce high-quality welds with good control make it widely used for special steel. 3. Gas Tungsten Arc Welding (GTAW), also known as TIG welding, employs a non-consumable tungsten electrode and a shielding gas to create an electric arc. This technique is often preferred for special steel alloys that require precise control over the welding process and where weld quality and appearance are crucial. 4. Flux-Cored Arc Welding (FCAW), similar to GMAW, employs a continuously fed tubular electrode filled with flux. This technique is commonly used for special steel applications that necessitate high deposition rates and deep penetration, such as heavy fabrication or structural welding. 5. Submerged Arc Welding (SAW) involves creating an arc between a continuously fed bare electrode and the workpiece, while a layer of granular flux covers the arc. This technique is typically used for heavy-duty applications and thick materials, providing excellent weld quality and high deposition rates. 6. Laser Beam Welding (LBW) utilizes a highly focused laser beam to melt and join special steel parts. It offers precise control, high welding speeds, and minimal distortion, making it suitable for specialized applications that require high precision and minimal heat-affected zones. It is crucial to consider factors such as material composition, thickness, joint configuration, and desired weld properties when selecting the appropriate welding technique for special steel. Expertise and knowledge are essential to determine the best technique for a specific application, ensuring optimal results in terms of weld quality, strength, and durability.
Q: Can special steel be used in the production of turbine blades?
Yes, special steel can be used in the production of turbine blades. Special steel, such as superalloys, offers excellent high-temperature strength, corrosion resistance, and fatigue resistance, making it ideal for turbine blade applications where these properties are crucial for optimal performance and durability.
Q: What are the different heat treatment defects in special steel?
Some common heat treatment defects in special steel include decarburization, quench cracking, distortion, and grain growth. Decarburization occurs when the surface of the steel loses carbon during the heating process, leading to a reduction in hardness and strength. Quench cracking refers to the formation of cracks due to rapid cooling after the steel has been heated. Distortion can occur when uneven heating or cooling causes changes in shape or dimensions of the steel. Finally, grain growth refers to the enlargement of grain size, which can negatively impact the mechanical properties of the steel.
Q: What are the properties of silicon steel?
Silicon steel, also known as electrical steel or transformer steel, has several important properties. It is characterized by low core loss and high magnetic permeability, making it highly efficient in electrical applications. Silicon steel is also known for its ability to generate minimal heat during operation, which is crucial for transformers and other electrical devices. Additionally, it exhibits excellent magnetic properties, such as high saturation flux density and low coercive force, allowing for efficient energy transfer and minimizing energy losses.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords