Alloyed Continue Casting Steel Bloom by Blast Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Alloyed Steel Bloom by Blast Furnace with Chromium
1.Structure of Alloyed Steel Bloom by Blast Furnace with Chromium
Steel Blooms Manufactured by Continue Casting is the raw material of all kinds of steel mill. Bloom section of square, round, flat, rectangular and abnormity, etc Several, mainly related to shape of rolled products. Simple rolled section steel, choose cross section of square Bloom or rectangular Bloom. rolling The sector products such as flat steel, Angle steel, select the rectangular Bloom or slab. Had better profiled Bloom when production beams, channels, and in rolling process Lines and improve the yield. The raw material of round Bloom is the production of seamless tube.
2.Main Features of Alloyed Steel Bloom by Blast Furnace with Chromium.
Steel Blooms Manufactured by Continue Casting section size should meet the requirements of rolling deformation and finished product quality, but also roll strength and biting condition of restrictions. General steel Bloom section height H. And the roll diameter D The ratio of the ( namely H/D) Should be less than or equal to zero 0.5 . Length of steel Bloom by finishing temperature, Rolling time and the length of the product Or times ruler. When heated too long accident prone to bump the furnace wall of steel, too short, furnace bottom utilization rate is not high, influence the heating furnace production. For the production Choose a variety of steel and steel Bloom, should consider the affinities of Bloom, as far as possible in order to improve the productivity of the roughing mill, simplify the stock management of workshop.
There are three shapes of the steel Blooms: square Bloom, slab, rectangular Bloom The Chinese Bloom, rectangular Bloom is mainly suitable for rolling hot rolled strip, building reinforced bar, Ordinary wire, high speed wire rod and various small profile. Of the slab are mainly used for rolling plate and hot coil sheet.
3. Alloyed Steel Bloom by Blast Furnace with Chromium Images
4. Alloyed Steel Bloom by Blast Furnace with Chromium Specification
Steel Bloom by Blast Furnace with Chromium rolled steel, after processing can be used for mechanical parts, forging parts, processing all kinds of steel, steel Q345B channel steel, wire rod is the role of the Bloom. Steel Bloom is used in the production of semi-finished products, generally cannot be used directly for the society. Steel Blooms and steel are strictly divided into standard, cannot decide to whether the business enterprise of the final product, and according to unified standards to perform the whole society. Typically, Bloom and the steel is relatively easy to distinguish, but for some steel Bloom, and have the same specification and same steel purposes (such as rolling tube Bloom), whether can be used for other industries, whether through steel processing process, whether through a finished product rolling mill processing to distinguish
Material standard The editor Range of thickness: 150-240 - mm + / - 5 mm width range: 880-1530 - mm + / - 20 mm Length: 3700-10000 - mm + / - 500 - mm Cross-sectional size: 64 * 64; 82 * 82; 98 * 98; 124 * 124; 120 * 150; 152 * 164; 152 * 170 mm Length: 9000 mm Section of tolerance: Bloom: 1.0 + / - 2.0-1.0 + / - 1.0 mm slab: width: + / - 2.0 mm thickness: + / - 3.0 mm The length tolerance: + / - 200 mm Section diagonal tolerance: 3.5-8.0 MM Bloom section size protrusions requirements: < 1242 mm, do not allow; > = 1242 mm, < = 2 mm 1242 mm, < = 3 mm Beheading (shear) extension deformation: < 1242 mm Bloom: no control; The slab: < = 15 mm Surface tilt: no more than Bloom section 0.1 Bending: every 1 m length is not more than 10 mm The distortion: length < = 5 m, < = 11. ; The length of the < = 7.5 M, < = 5. Material % 3 sp/PS chemical composition: C Mn Si S P
5.FAQ of Alloyed Continue Casting Steel Bloom by Blast Furnace
We have organized several common questions for our clients,may help you sincerely:
①How about your company?
A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.
②How to guarantee the quality of the products?
We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.
③How is the packaging and delivery?
Exporting Package with the steel material cover and the delivery term is based on the project.
- Q: How are steel billets labeled for identification purposes?
- To identify steel billets, a combination of alphanumeric codes and markings are utilized. These labels contain vital data regarding the billet's composition, size, and other significant particulars. The most prevalent approach to label steel billets involves directly stamping or engraving the necessary information onto the billet's surface. This includes details like steel grade, heat number, lot number, and the manufacturer's symbol or logo. These markings are typically made using durable and legible industrial-grade ink or via electrochemical etching, ensuring their resilience even in harsh environments. Additionally, steel billets may also carry identification tags or labels that offer additional information which cannot be easily engraved or stamped. These tags or labels may feature barcodes, QR codes, or RFID tags, allowing for quick access to relevant information through specialized equipment. By employing these labeling methods, steel billets can be easily identified, tracked, and monitored throughout their lifespan. This ensures effective quality control, inventory management, and efficient production processes within the steel industry.
- Q: What are the different types of steel billet surface treatments?
- There are several different types of steel billet surface treatments, including pickling, shot blasting, and painting. Pickling involves removing impurities and oxides from the surface of the billet using an acid solution. Shot blasting is a process in which small metallic or abrasive particles are blasted onto the surface of the billet to remove rust, scale, and other contaminants. Painting involves applying a protective coating or layer of paint to the surface of the billet to prevent corrosion and improve its appearance.
- Q: Can steel billets be used in the production of railway tracks?
- Yes, steel billets can be used in the production of railway tracks. Steel billets are semi-finished products that are commonly used in the manufacturing of various steel products, including railway tracks. Railway tracks require high strength and durability to withstand the weight and movement of trains. Steel billets, which are typically made from carbon steel or alloy steel, provide the necessary strength and structural integrity required for railway tracks. These billets can be further processed and shaped into rails through hot rolling or other manufacturing processes. The final rails are then installed on railway tracks to provide a smooth and safe surface for train movement. Therefore, steel billets are an essential raw material in the production of railway tracks.
- Q: What are the different types of coating processes used for protecting steel billets?
- Steel billets can be protected using various coating processes. These processes serve the purpose of preventing corrosion and enhancing the durability of the steel billets. Some commonly employed coating methods are as follows: 1. Hot-dip galvanizing: In this technique, the steel billets are immersed in molten zinc, creating a safeguarding layer on the surface. This zinc layer ensures long-lasting protection against corrosion. 2. Electroplating: By using an electric current, a thin layer of metals like zinc, nickel, or chrome is deposited onto the steel billets. This metal coating acts as a barrier against corrosion while improving the appearance of the steel. 3. Powder coating: A dry powder is applied to the steel billets and then heated, resulting in the formation of a protective layer. This process offers exceptional resistance against corrosion, chemicals, and UV rays. 4. Thermal spray coating: This method involves spraying melted or heated materials onto the steel billets. The coating materials can include metal alloys, ceramics, or polymers. Thermal spray coatings provide excellent wear resistance, corrosion protection, and thermal insulation. 5. Paint coating: Applying paint onto the steel billets is a popular protective measure. The paint acts as a barrier, preventing moisture and atmospheric elements from causing corrosion while maintaining the steel's appearance. Each coating process has its own advantages and is suitable for different applications. The choice of coating method depends on factors such as the desired level of protection, environmental conditions, and cost considerations.
- Q: How do steel billet prices fluctuate in the market?
- Steel billet prices fluctuate in the market due to a variety of factors. One of the key factors is the demand and supply dynamics of the steel industry. When there is high demand for steel billets, prices tend to rise as suppliers have more leverage to set higher prices. Conversely, when demand is low, prices may decrease as suppliers compete for a smaller pool of buyers. Another important factor influencing steel billet prices is the cost of raw materials. Steel is primarily made from iron ore, coal, and scrap metal, and any fluctuations in the prices of these raw materials can directly impact the cost of producing steel billets. For example, if there is a shortage of iron ore, the price of steel billets may increase due to higher production costs. Additionally, market conditions and economic factors can also affect steel billet prices. Factors such as inflation, interest rates, and currency exchange rates can impact the overall cost of production and transportation, which in turn may influence the prices of steel billets. Furthermore, geopolitical events and trade policies can also play a role in price fluctuations. Tariffs, trade disputes, or changes in import/export regulations can disrupt the supply chain and impact the prices of steel billets. Overall, steel billet prices are subject to a complex interplay of factors, including demand and supply dynamics, raw material costs, market conditions, and geopolitical events. Traders, manufacturers, and investors closely monitor these factors to anticipate and respond to price fluctuations in the steel billet market.
- Q: How do steel billets contribute to sustainable construction?
- Steel billets contribute to sustainable construction in several ways. Firstly, steel is a highly durable and long-lasting material, which means that structures made from steel billets have a longer lifespan and require less maintenance and repair over time. This reduces the need for frequent reconstruction and minimizes waste generation. Secondly, steel is a recyclable material, and steel billets can be easily melted down and reused in the production of new steel products without losing their quality. This reduces the demand for raw materials and energy consumption, reducing the environmental impact of construction. Furthermore, steel is known for its strength and load-bearing capacity, allowing for the design of lighter and more efficient structures. This not only reduces the amount of steel required in construction but also decreases the overall weight of the building, which can lead to energy savings during transportation and construction. Lastly, steel is resistant to pests, such as termites, and is not susceptible to rot or decay. This eliminates the need for chemical treatments and preservatives, making it a safer and more sustainable choice for construction. Overall, steel billets contribute to sustainable construction by promoting durability, recyclability, energy efficiency, and reduced environmental impact.
- Q: How are steel billets used in the production of railway parts?
- Steel billets are used in the production of railway parts by being heated and shaped into various forms such as rails, wheels, and axles. These billets serve as the starting material that is forged or rolled into the desired shape to meet the specific requirements of railway components, ensuring durability, strength, and reliability for safe and efficient train operation.
- Q: How does the market demand for steel billets fluctuate over time?
- The demand for steel billets in the market can change due to a variety of factors. One of the main drivers of demand is the overall state of the economy. When the economy is doing well, there is usually a higher demand for steel billets because they are an important raw material for industries like construction, automotive, and manufacturing. On the other hand, during economic downturns or recessions, the demand for steel billets tends to decrease as these industries reduce their production and investment. Another factor that can affect the market demand for steel billets is the construction industry. Projects related to infrastructure, real estate, and urbanization can increase the demand for steel billets, as they are necessary for building structures like buildings and bridges. Changes in government policies or regulations regarding infrastructure spending can also have an impact on the demand for steel billets. Furthermore, the automotive industry plays a significant role in the demand for steel billets. As the automotive sector grows or declines, the demand for steel billets used in the production of automobile parts and components can change accordingly. Global trade and international relations can also influence the market demand for steel billets. Factors like tariffs, trade agreements, and geopolitical tensions can affect the supply and demand dynamics, leading to fluctuations in demand. For example, increased protectionism or trade barriers can result in reduced demand for steel billets in certain markets. Lastly, technological advancements and changes in consumer preferences can have an impact on the demand for steel billets. For instance, the increased use of alternative materials like aluminum or composites in certain industries may decrease the demand for steel billets. Additionally, shifts in consumer preferences towards more sustainable or lightweight products can also affect the demand for steel billets. In conclusion, the demand for steel billets in the market can change due to factors such as economic conditions, construction industry activity, automotive industry trends, global trade dynamics, and technological advancements. It is important for market participants to understand these factors and their potential impacts in order to anticipate and adapt to changes in demand for steel billets.
- Q: How are steel billets used in the construction of bridges?
- Steel billets are an essential component in the construction of bridges due to their exceptional strength and durability. These cylindrical pieces of raw steel are heated and shaped into various structural components, such as beams, columns, and girders, which form the backbone of bridge structures. The first step in using steel billets for bridge construction involves heating them in a furnace to make them malleable. Once heated to the desired temperature, the billets are then passed through a series of rollers to shape them into the required sections. This process, known as hot rolling, ensures that the steel attains the necessary strength and structural integrity. The shaped steel billets are then further processed and fabricated to create different bridge components. Beams, for instance, are made by cutting and welding steel billets to form long, horizontal members that support the weight of the bridge deck. These beams are often designed to withstand heavy loads and provide stability to the overall structure. Columns, on the other hand, are vertical members that transfer the load from the bridge deck to the foundations. Steel billets are shaped and welded together to form these load-bearing columns, ensuring that they have the required strength to withstand compression forces. Girders are another crucial component in bridge construction, serving as horizontal supports that span across the bridge's width. Steel billets are shaped into girders, which are then fabricated and connected to the bridge's piers or abutments. These girders provide the necessary strength to distribute the weight of the bridge deck evenly. In addition to their strength, steel billets offer several advantages in bridge construction. They have a high resistance to corrosion, ensuring the durability and longevity of the bridge structure. Steel billets are also highly versatile, allowing for various shapes and sizes to be created, which enables engineers to design bridges that can meet specific project requirements. Overall, steel billets are extensively used in the construction of bridges due to their strength, durability, and versatility. They form the backbone of bridge structures, providing the necessary support and stability to ensure the safe and efficient transportation of people and goods.
- Q: How are steel billets used in the production of beams and columns?
- Beams and columns require steel billets, which are semi-finished steel products typically in square or rectangular shapes. They are created through casting, where liquid steel is poured into molds and allowed to solidify. After solidifying, the steel billets undergo further processing to become beams and columns. This involves heating, rolling, and shaping. To begin, the billets are heated in a furnace to increase their malleability and ease of shaping. This process is called soaking. Then, the billets are passed through rolling mills under high pressure to achieve the desired dimensions. For beams, the steel billets are rolled into long, slender shapes with either an I or H cross-section. These beams provide structural support and handle heavy vertical loads, transferring them to the columns or other supporting structures. On the other hand, columns are produced by rolling steel billets into cylindrical shapes. These cylindrical billets are further processed to achieve the desired diameter and length. Columns are crucial for building construction, as they provide vertical support and evenly distribute the structure's weight. In conclusion, steel billets are essential in the production of beams and columns. Through heating, rolling, and shaping processes, these billets are transformed into sturdy and reliable structural components necessary for constructing buildings.
Send your message to us
Alloyed Continue Casting Steel Bloom by Blast Furnace
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords