TMT Reinforced Bars 10mm
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 500000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
TMT Reinforced Bars 10mm
Description of TMT Reinforced Bars 10mm
1, Diameter: 5.5mm-10mm TMT Reinforced Bars 10mm
10m- 40mm TMT Reinforced Bars 10mm
2, Length: 6m, 9m, 12m or customized
3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN
OEM technology - send detailed technical parameters for accurate quotation.
2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet -
hot rolled or forged to get the steel round bar and plate
3, Heat Treatment: annealing, normalizing, tempering, quenching
4, Surface Treatment: Black
5, Quality Assurance: We accept third party inspection for all orders.
You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.
Chemical Composition of TMT Reinforced Bars 10mm
Grade | Technical data of the original chemical composition(%) | |||||
Reinforcing steel bar HRB335 | C | Mn | Si | S | P | B |
≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | >0.0008 | |
Physics Capability | ||||||
Yield Strength(N/cm2) | Tensile Strength(N/cm2) | Elongation(%) | ||||
≥ 335 | ≥490 | ≥16 | ||||
Reinforcing steel bar HRB400 | C | Mn | Si | S | P | B |
≤0.25 | ≤0.16 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physics Capability | ||||||
Yield Strength(N/cm2) | Tensile Strength(N/cm2) | Elongation(%) | ||||
≥ 400 | ≥ 570 | ≥ 14 |
Products Show of TMT Reinforced Bars 10mm
Company Information
CNBM International Corporation is the most important trading platform of CNBM group.
Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.
F A Q
1, Your advantages?
professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale
2, Test & Certificate?
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem
3, Factory or Trading Company?
CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.
4, Payment Terms?
30% TT as deposit and 70% before delivery.
Irrevocable L/C at sight.
5, Trading Terms?
EXW, FOB, CIF, FFR, CNF
6, After-sale Service?
CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.
For any problem, please kindly contact us at any your convenient time.
We'll reply you in our first priority within 24 hours.
- Q:What are the quality control measures for special steel?
- The quality control measures for special steel typically include thorough inspection and testing of raw materials, monitoring and controlling the manufacturing process, conducting various mechanical and chemical tests, ensuring dimensional accuracy and surface finish, and conducting final inspection and certification to meet specific industry standards. These measures are essential to ensure the desired properties and performance of special steel, as well as to meet customer requirements and ensure product reliability and safety.
- Q:How does special steel contribute to the hardness of products?
- Special steel contributes to the hardness of products through its unique composition and manufacturing process. It contains alloying elements such as chromium, tungsten, and manganese, which enhance its strength and resistance to wear and tear. The controlled heat treatment during production further refines the steel's microstructure, resulting in increased hardness. This hardness enables special steel to withstand high pressures, impacts, and abrasive forces, making it ideal for applications where durability and strength are crucial, such as in tools, machinery, and construction materials.
- Q:What are the different methods for quenching special steel?
- Quenching is a critical step in the heat treatment process of special steel, as it helps to achieve the desired mechanical properties and improve the material's hardness and strength. There are several methods for quenching special steel, each with its own advantages and considerations. 1. Oil Quenching: This is one of the most commonly used methods for quenching special steel. The steel component is immersed in oil, which acts as a cooling medium. Oil quenching provides a moderate rate of cooling, allowing for controlled and uniform hardening. It is suitable for a wide range of steel grades and can prevent cracking or distortion. 2. Water Quenching: Water quenching is a faster cooling method compared to oil quenching. It provides rapid heat extraction, resulting in higher hardness and strength. However, the high cooling rate can also lead to increased risk of cracking or distortion, especially with thicker sections. Water quenching is commonly used for low-alloy steels and some high-alloy steels. 3. Polymer Quenching: Polymer quenching involves using a specialized polymer solution as the cooling medium. This method provides a controlled cooling rate, offering a balance between the slower oil quenching and faster water quenching. Polymer quenching can be particularly suitable for steels with complex shapes or critical dimensions, as it reduces the risk of distortion and cracking. 4. Air Quenching: Air quenching is a slower cooling method that involves allowing the steel component to cool in ambient air. It is typically used for steels with lower hardenability, as it provides a more gradual cooling rate. Air quenching can help to reduce the risk of distortion and cracking, but it may result in lower hardness and strength compared to other quenching methods. 5. Salt Bath Quenching: Salt bath quenching involves immersing the steel component in a molten salt bath as the cooling medium. This method provides a controlled and uniform cooling rate, reducing the risk of distortion and cracking. Salt bath quenching is particularly suitable for complex-shaped or delicate parts, as it minimizes the thermal stress during cooling. It is important to note that the choice of quenching method depends on various factors, such as the steel grade, desired hardness, component size and shape, and the required mechanical properties. Proper selection and implementation of the quenching method are crucial to achieving the desired material characteristics and ensuring the overall quality of the special steel product.
- Q:What are the main characteristics of heat-resistant steel forgings?
- Heat-resistant steel forgings have several main characteristics that make them suitable for high-temperature applications. Firstly, they have excellent resistance to oxidation and corrosion, which allows them to maintain their mechanical properties even at elevated temperatures. This resistance is achieved through the addition of alloying elements such as chromium, nickel, and molybdenum, which form a protective oxide layer on the surface of the steel. Secondly, heat-resistant steel forgings exhibit high strength and toughness at high temperatures. This is crucial in applications where the material is subjected to mechanical stress and thermal cycling, such as in gas turbines, power plants, and aerospace engines. The combination of high strength and toughness ensures that the forgings can withstand the harsh operating conditions without deformation or failure. Another important characteristic of heat-resistant steel forgings is their ability to retain their hardness and dimensional stability even after prolonged exposure to high temperatures. This is achieved through a combination of careful alloying and heat treatment processes, which optimize the microstructure of the steel. The resulting material has a fine grain structure and a high degree of uniformity, which enhances its resistance to thermal fatigue and creep. Furthermore, heat-resistant steel forgings have good thermal conductivity, which allows for efficient heat transfer and dissipation. This is particularly important in applications where heat is generated and needs to be managed effectively to prevent overheating and damage to surrounding components. Lastly, heat-resistant steel forgings can be easily machined and fabricated into complex shapes, making them versatile and suitable for a wide range of applications. They can be forged, machined, and welded without any significant loss in their mechanical properties, making them ideal for manufacturing components with intricate designs and high precision requirements. In conclusion, the main characteristics of heat-resistant steel forgings include excellent resistance to oxidation and corrosion, high strength and toughness at high temperatures, dimensional stability and hardness retention, good thermal conductivity, and ease of machining and fabrication. These characteristics make heat-resistant steel forgings essential in industries that require reliable and durable materials in extreme heat conditions.
- Q:What industries use special steel?
- Several industries use special steel, including automotive, aerospace, construction, energy, manufacturing, and oil and gas.
- Q:What are the different surface hardening techniques used for special steel?
- There are several surface hardening techniques used for special steel, including carburizing, nitriding, induction hardening, flame hardening, and laser hardening.
- Q:What are the properties of wear-resistant alloy steel?
- The properties of wear-resistant alloy steel include high hardness, excellent toughness, resistance to abrasion and impact, good dimensional stability, and high corrosion resistance. These properties make it ideal for applications where wear and tear, such as sliding or impact, is a concern, ensuring durability and longevity of the material in harsh environments.
- Q:What are the different methods of coating special steel?
- There are several different methods of coating special steel, including galvanizing, electroplating, powder coating, and thermal spraying. Galvanizing involves dipping the steel in a bath of molten zinc to create a protective layer. Electroplating uses an electric current to deposit a thin layer of metal onto the steel surface. Powder coating involves applying a dry powder to the steel and then curing it with heat to form a durable coating. Thermal spraying uses a high-velocity stream of molten or semi-molten material to create a protective layer on the steel.
- Q:What are the different methods for improving the machinability of special steel?
- There are several methods that can be used to improve the machinability of special steel. 1. Alloying: One method is to add alloying elements to the steel. These elements can help improve the machinability by reducing the hardness and increasing the chip-breaking ability of the material. Common alloying elements include sulfur, lead, and selenium. 2. Heat treatment: Another method is to subject the steel to specific heat treatment processes. For example, annealing the steel can help soften it, making it easier to machine. Similarly, tempering can help improve the machinability by reducing the hardness and increasing the toughness of the material. 3. Cutting fluids: The use of suitable cutting fluids during machining can significantly improve the machinability of special steel. These fluids act as coolants, reducing the heat generated during cutting and lubricating the cutting tool, thereby reducing friction and improving chip evacuation. 4. Tool selection: Choosing the right cutting tool for the specific steel being machined is crucial for improving machinability. Tools with appropriate coatings, geometries, and cutting parameters can help reduce cutting forces, improve chip control, and enhance overall machining efficiency. 5. Reduced cutting speeds: Lowering the cutting speeds can help improve the machinability of special steel. This can be achieved by reducing the feed rate or spindle speed. However, it is important to ensure that the cutting speed is still within the recommended range to prevent negative effects on tool life and productivity. 6. Pre-machining operations: Performing pre-machining operations such as forging, extrusion, or rolling can help refine the microstructure of the steel, making it more suitable for subsequent machining processes. These operations can help break down large grains, improve homogeneity, and reduce the material's overall hardness. 7. Surface treatments: Applying surface treatments, such as coatings or platings, can enhance the machinability of special steel. These treatments can improve the tool's wear resistance, reduce friction, and promote better chip flow, leading to improved machining performance. It is important to note that the specific method or combination of methods used for improving machinability will depend on the type of special steel being machined, the desired outcomes, and the available resources. It is advisable to consult with experts or conduct thorough research to determine the most appropriate approach for a particular application.
- Q:How does special steel contribute to the overall strength and durability of structures?
- Special steel contributes to the overall strength and durability of structures by providing enhanced mechanical properties such as higher tensile strength, improved corrosion resistance, and increased toughness. Its unique composition and manufacturing processes allow for greater load-bearing capacity, better resistance to wear and tear, and increased longevity. This makes it a crucial material in construction, engineering, and other industries where strength and durability are paramount.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
TMT Reinforced Bars 10mm
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 500000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords