• Deformed Steel Bar, 10mm 12mm Steel Rebar System 1
  • Deformed Steel Bar, 10mm 12mm Steel Rebar System 2
  • Deformed Steel Bar, 10mm 12mm Steel Rebar System 3
Deformed Steel Bar, 10mm 12mm Steel Rebar

Deformed Steel Bar, 10mm 12mm Steel Rebar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
100 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

OKorder is offering Deformed Steel Bar, 10mm 12mm Steel Rebar at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Deformed Steel Bar, 10mm 12mm Steel Rebar are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Deformed Steel Bar, 10mm 12mm Steel Rebar are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335,HRB400,HRB500

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

Deformed Steel Bar

Diameter

(MM)

Cross

Sectional

Area

(MM2)

Theorectical

Weight

(KG/M)

6

28.27

0.222

8

50.27

0.395

10

78.54

0.617

12

113.1

0.888

14

153.9

1.21

16

201.1

1.58

18

254.5

2

20

314.2

2.47

22

380.1

2.98

25

490.9

3.85

28

615.8

4.83

32

804.2

6.31

36

1018

7.99

40

1257

9.87

Grade

Technical data of the original chemical composition (%) 

C

Mn

Si

S

P

V

HRB500

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation (%)

 

≥500

≥630

≥12

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How many tons of steel products could be loaded in containers?

A2: Usually the steel products are delivered by bulk vessel because of the large quantity and the freight. However, there are no bulk vessel enter some seaports so that we have to deliver the cargo by containers. The 6m steel product can be loaded in 20FT container, but the quantity is changed according to the size, usually from 18tons to 25tons.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

 

Images:

Q: What are the main uses of threaded steel?
Steel is usually used for reinforced concrete, its role is to increase the friction fringe, the rebar and concrete secant integrally formed together, tic phenomenon can not occur in the role of external force, improve the strength of concrete.
Q: How do steel rebars affect the flexibility of a structure?
Steel rebars can enhance the flexibility of a structure by providing additional tensile strength and allowing it to better withstand external forces, such as earthquakes or wind loads. The rebars act as reinforcement, distributing stress more evenly throughout the structure and reducing the risk of failure.
Q: How do steel rebars affect the flexibility of concrete structures?
Steel rebars play a crucial role in enhancing the flexibility and overall strength of concrete structures. When incorporated into concrete, rebars provide tensile strength, which is essential for resisting bending and stretching forces that can cause cracks or failure in the structure. Concrete is strong in compression but weak in tension. This means that it can withstand a significant amount of weight pushing down on it, but it is prone to cracking or breaking when subjected to pulling or stretching forces. By adding steel rebars to the concrete, its tensile strength is significantly increased, allowing it to better resist these tension forces. The presence of rebars in concrete structures allows them to distribute loads more evenly and efficiently. When subjected to external forces such as wind, earthquakes, or heavy loads, the rebars help to distribute the stress throughout the concrete, preventing concentrated stress points and minimizing the risk of structural failure. Furthermore, steel rebars also enhance the flexibility of concrete structures. By providing additional support and reinforcement, rebars allow the concrete to bend and flex to a certain extent. This flexibility is crucial, especially in areas prone to seismic activity or where excessive vibrations occur. Flexibility in concrete structures is essential as it allows the building to absorb and dissipate energy during earthquakes or other dynamic forces. Without the presence of rebars, concrete structures would be more rigid and prone to cracking or collapsing under such conditions. In summary, steel rebars greatly improve the flexibility and overall performance of concrete structures. By providing the necessary tensile strength and reinforcement, they enable the concrete to withstand bending, stretching, and external forces more effectively, reducing the risk of structural failure and ensuring the longevity and durability of the construction.
Q: Are there any safety concerns related to handling steel rebars?
Yes, there are safety concerns related to handling steel rebars. Steel rebars are heavy and can cause strain or muscle injuries if not lifted properly. It is important to use proper lifting techniques and equipment such as gloves, back supports, and lifting tools to prevent injuries. Additionally, sharp edges on rebars can pose a puncture or laceration hazard, so it is crucial to wear appropriate protective clothing such as steel-toed boots and gloves. Workers should also be cautious of tripping hazards caused by rebars lying on the ground. Proper housekeeping and keeping the work area clear can help prevent accidents. Lastly, working with rebars involves the use of power tools such as cutting saws, which can generate noise, dust, and debris. Adequate hearing protection, dust masks, and eye protection should be worn to minimize these risks. Overall, following safety guidelines and proper procedures is crucial when handling steel rebars to prevent accidents and injuries.
Q: What is the recommended diameter of steel rebars for beam reinforcement?
The recommended diameter of steel rebars for beam reinforcement typically ranges from 10mm to 32mm, depending on the specific structural requirements and design considerations.
Q: Can steel rebars be used in reinforced masonry walls?
Yes, steel rebars can be used in reinforced masonry walls. In fact, using steel rebars is a common practice in constructing reinforced masonry walls to enhance their strength and durability. The rebars are typically embedded within the mortar joints between the masonry units, such as bricks or concrete blocks. The steel rebars help to distribute the tensile forces that may occur in the masonry wall due to external loads or structural movements, as masonry materials are primarily strong in compression but weak in tension. By adding steel rebars, the reinforced masonry walls can better resist lateral forces, such as wind or seismic loads, and prevent cracking or structural failures. Additionally, the use of steel rebars can also increase the overall stability and load-bearing capacity of the masonry wall, making it suitable for a wide range of construction projects.
Q: How do steel rebars affect the overall constructability of a project?
The overall constructability of a project is greatly influenced by steel rebars. These rebars, also known as reinforcing bars, play a vital role in improving the strength, durability, and stability of concrete structures. They are essential in mitigating the tensile forces that concrete alone cannot bear, thereby increasing the overall load-bearing capacity of the structure. To begin with, steel rebars simplify the construction process by providing a framework for pouring and shaping concrete. They serve as a skeletal structure that holds the concrete in place during the curing process, ensuring proper setting and desired shaping. This contributes to the efficiency of construction projects, allowing for faster concrete placement and reducing the risk of structural deformities. Furthermore, rebars enhance the structural integrity of the project. By reinforcing the concrete, they enhance its ability to resist cracking, bending, and breaking under different loads and environmental conditions. This added strength and resilience make the structure more durable and reduce the need for frequent repairs or maintenance, ultimately saving time and costs in the long term. In addition to strength and durability, steel rebars also contribute to the constructability of a project by enabling flexibility in design. Architects and engineers have the freedom to create complex and innovative structures, such as high-rise buildings, bridges, and tunnels, that require high load-bearing capacities. The versatility of rebars allows for the construction of structures with unique shapes, curves, and spans, expanding the possibilities of architectural design. Moreover, steel rebars facilitate constructability by enabling the construction of large-scale projects. They allow for the creation of reinforced concrete elements, such as columns, beams, and slabs, capable of supporting heavy loads and distributing them evenly throughout the structure. This capability is particularly crucial for projects that require significant weight-bearing capacity, such as industrial buildings or infrastructure projects. In conclusion, steel rebars have a profound impact on the constructability of a project. They simplify the construction process, enhance structural integrity, enable flexibility in design, and facilitate the construction of large-scale projects. By incorporating rebars into concrete structures, construction professionals can ensure that their projects are stronger, more durable, and better equipped to withstand various loads and environmental conditions.
Q: Can steel rebars be used in structures with high moisture content in the environment?
Structures in high-moisture environments can utilize steel rebars, but precautions must be taken to avoid corrosion. The corrosion process of steel is accelerated by moisture, which can lead to long-term structural problems. To reduce this risk, various measures can be taken. One option is to consider using corrosion-resistant steel rebars, such as stainless steel rebars. These rebars are specifically designed to withstand corrosion in high-moisture environments, making them suitable for structures exposed to moisture. Another important measure is maintaining an adequate thickness of concrete cover to protect the rebars from direct contact with moisture. Sufficient concrete cover acts as a barrier, preventing moisture from reaching the steel surface and minimizing the risk of corrosion. Additionally, the application of waterproofing materials and coatings can effectively prevent moisture from entering the structure. These materials create a protective layer on the concrete surface, preventing water penetration and reducing the likelihood of corrosion. Regular inspections and maintenance are crucial for structures in high-moisture environments. Periodic inspections can help identify early signs of corrosion or damage, enabling timely repairs or preventive actions. In conclusion, while steel rebars can be used in structures with high moisture content, it is essential to implement appropriate measures to prevent corrosion. The use of corrosion-resistant rebars, maintaining proper concrete cover, and applying waterproofing materials can greatly enhance the durability and longevity of such structures.
Q: What are the common defects observed in steel rebars?
Some common defects observed in steel rebars include: 1. Rust and corrosion: Steel rebars are susceptible to rust and corrosion when exposed to moisture and oxygen. This can weaken the structural integrity of the rebar and compromise the overall strength of the concrete structure. 2. Cracks and fractures: Rebars can develop cracks and fractures due to various factors such as excessive bending, improper handling during transportation and installation, or overloading. These defects can reduce the load-bearing capacity of the rebar and affect the performance of the concrete structure. 3. Lack of bond: Adequate bond between the rebar and the surrounding concrete is crucial for transferring loads effectively. However, poor surface preparation, improper placement, or the presence of contaminants can lead to a lack of bond, resulting in reduced structural strength. 4. Bent or deformed rebars: Rebars are often bent during fabrication to fit specific construction requirements. However, improper bending techniques, excessive bending, or mishandling can result in rebars with incorrect shapes or deformities. These defects can compromise the structural integrity and load-bearing capacity of the rebar. 5. Dimensional inaccuracies: Steel rebars must conform to specific dimensional tolerances to ensure proper fit and alignment within the concrete structure. However, manufacturing errors or improper storage and handling can lead to dimensional inaccuracies, causing difficulties during installation and potentially affecting the structural performance. 6. Inclusions and impurities: Steel rebars should ideally be free from any inclusions or impurities that can weaken the material. However, inadequate quality control during the manufacturing process can result in the presence of foreign materials or impurities within the steel, which can reduce its strength and durability. It is important to ensure proper quality control measures and adherence to industry standards during the manufacturing, transportation, and installation of steel rebars to minimize these defects and ensure the long-term structural integrity of concrete structures.
Q: How are steel rebars used in the construction of power plants?
Due to their strength and durability, steel rebars are widely used in power plant construction. These reinforced steel bars are essential for providing structural support and reinforcement to the concrete components of the power plant. One important application of steel rebars in power plant construction is in the construction of foundations and structural members. These foundations need to be strong and stable to support heavy equipment and machinery, as well as withstand dynamic loads and vibrations. To enhance the structural integrity and resistance to compressive and tensile forces, steel rebars are embedded within the concrete foundation. In addition to foundations, steel rebars are also utilized in the construction of walls, columns, and beams in power plants. These elements play a crucial role in supporting the overall structure and ensuring its stability. By adding steel rebars to the concrete mix, the resulting reinforced concrete components can withstand higher loads and resist cracking or deformation under stress. Furthermore, steel rebars are employed in the construction of containment structures in nuclear power plants. These structures are designed to confine any potential release of radioactive materials in case of accidents or incidents. By incorporating steel rebars into the concrete walls and floors of these containment structures, their strength and resistance to impact and penetration are significantly improved, thus enhancing the safety and security of the power plant. In summary, steel rebars are of utmost importance in power plant construction as they provide reinforcement to concrete elements, ensuring the structural integrity and long-lasting nature of the facility. Their use enhances the strength, durability, and safety of the power plant, enabling it to withstand various operational and environmental conditions.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords