• Ribbed Reinforcing Deformed Steel Bar-BS4449:1997 System 1
  • Ribbed Reinforcing Deformed Steel Bar-BS4449:1997 System 2
  • Ribbed Reinforcing Deformed Steel Bar-BS4449:1997 System 3
Ribbed Reinforcing Deformed Steel Bar-BS4449:1997

Ribbed Reinforcing Deformed Steel Bar-BS4449:1997

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
28 m.t.
Supply Capability:
30000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications

Ribbed Reinforcing Deformed Steel Bar-BS4449:1997
Size: from 8 to 32mm
Grade: HRB400, BIS460B, ASTMGR60,BS4449

    Ribbed Reinforcing Deformed Steel Bar-BS4449:1997

Grade: HRB335 HRB400 HRB500 HPB235  ASTM A615 Gr.40 Gr.60 Gr.75  BS449B 460B 500B

                   SD345 SD390 SD490 SD235 SD295 

 Standard: ASTM JIS GB DIN

 Diameter: 8mm-32mm

 Length: 6m 9m 12m 

 Application: construction material, building material

 Port of Loading: Tianjin

 Delivery Time: 25 days after confirmng your order

 Packing: in bundles

   Ribbed Reinforcing Deformed Steel Bar-BS4449:1997

DTHEORETICAL WEIGHTDTHEORETICAL WEIGHTDTHEORETICAL WEIGHT
/mm(kg/m)/mm(kg/m)/mm(kg/m)
80.395182326.31
100.617202.47367.99
120.888222.98409.87
141.21253.855015.42
161.58284.83

  Ribbed Reinforcing Deformed Steel Bar-BS4449:1997

GradeTechnical data of the original chemical composition(%)
CMnSiSPB
HRB335≤0.25≤1.60≤0.80≤0.045≤0.045>0.00008
Physics capability
Yield Strength(N/cm2)Tensile Strength(N/cm2)Elongation (%)
≥335≥490≥16

   Ribbed Reinforcing Deformed Steel Bar-BS4449:1997

GradeTechnical data of the original chemical composition(%)
CMnSiSPV
HRB400≤0.25≤1.60≤0.80≤0.045≤0.045>0.00008
Physics capability
Yield Strength(N/cm2)Tensile Strength(N/cm2)Elongation (%)
≥400≥570≥14

 

  Ribbed Reinforcing Deformed Steel Bar-BS4449:1997

 Grade: HRB335 HRB400 HRB500 HPB235  ASTM A615 Gr.40 Gr.60 Gr.75  BS449B 460B 500B

                   SD345 SD390 SD490 SD235 SD295 

 Standard: ASTM JIS GB DIN

 Diameter: 8mm-32mm

 Length: 6m 9m 12m 

 Application: construction material, building material

 Port of Loading: Tianjin

 Delivery Time: 25 days after confirmng your order

 Packing: in bundles

   Ribbed Reinforcing Deformed Steel Bar-BS4449:1997

 

Q: What is the role of steel rebars in the construction of sports arenas and stadiums?
Steel rebars play a vital role in the construction of sports arenas and stadiums as they provide reinforcement and structural support to concrete elements such as columns, beams, and slabs. These rebars help enhance the overall strength and stability of the structures, ensuring they can withstand the heavy loads and stresses experienced in stadiums. Additionally, steel rebars also contribute to the durability and longevity of sports arenas by preventing cracking and structural failure caused by factors like vibrations, temperature changes, and seismic activity.
Q: Can steel rebars be used in architectural or decorative concrete applications?
Yes, steel rebars can be used in architectural or decorative concrete applications. They provide structural reinforcement and enhance the overall strength and durability of the concrete. Additionally, when properly designed and installed, steel rebars can be concealed or incorporated into the design, making them suitable for various aesthetic purposes in architectural or decorative concrete projects.
Q: Do l 8, three grade steel have discs?
Yes, but because of the higher grade of the three screw thread, they are straight bars. It's not necessary to use grade three for 8 mm.
Q: What are the common types of steel rebars used in residential construction?
The common types of steel rebars used in residential construction are typically Grade 40, Grade 60, and Grade 75. These rebars vary in terms of their yield strength and are chosen based on the specific structural requirements of the project.
Q: How are steel rebars different from other types of reinforcement?
The composition and strength of steel rebars set them apart from other types of reinforcement. Unlike fiberglass or carbon fiber, which are commonly used for reinforcement, steel rebars are made of steel, giving them exceptional strength and durability. One notable distinction between steel rebars and other reinforcement types is their capacity to withstand high tensile forces. Steel possesses a high tensile strength, allowing it to resist stretching or being pulled apart. This characteristic makes steel rebars ideal for reinforcing concrete structures that experience significant tensile loads, such as bridges, buildings, and highways. Another unique feature of steel rebars is their ability to bond effectively with concrete. The ridges or deformations on the rebars' surface enhance adhesion between the steel and concrete, facilitating efficient load transfer. This bond ensures that the concrete and steel work together as a composite material, enhancing the overall strength and structural integrity of the reinforced concrete structure. Steel rebars also offer versatility in terms of shape and size. They are available in various diameters, lengths, and shapes, including round, square, and deformed. This variety allows engineers to select the most suitable rebar type based on the specific requirements of the construction project. Moreover, steel rebars exhibit high resistance to corrosion, particularly when properly coated or protected. This corrosion resistance ensures the longevity and durability of the reinforced concrete structure, even in harsh environments or exposure to moisture. In conclusion, steel rebars stand out from other reinforcement types due to their exceptional strength, ability to withstand high tensile forces, excellent bond with concrete, versatility in shape and size, and resistance to corrosion. These qualities make steel rebars the most commonly used and preferred choice for reinforcing concrete structures in the construction industry.
Q: How do steel rebars provide flexibility to concrete structures?
Steel rebars provide flexibility to concrete structures in several ways. Firstly, steel rebars are used to reinforce concrete, which helps to increase the tensile strength of the structure. Concrete is strong in compression but weak in tension. By adding steel rebars, the concrete becomes more resistant to bending and cracking, as the rebars can absorb the tensile forces that would otherwise cause the concrete to fail. This reinforcement allows concrete structures to withstand greater loads and provides flexibility by preventing excessive deformation or collapse. Secondly, steel rebars can be used to create a reinforced concrete frame, which enhances the overall flexibility of the structure. The rebars, when embedded in the concrete, form a network of interconnected elements that distribute the applied loads more evenly. This network acts as a flexible skeleton that can adapt to different stresses, such as changes in temperature, ground movements, or dynamic forces. Consequently, the structure can accommodate slight movements or vibrations without suffering significant damage. Moreover, steel rebars can be strategically placed in areas where additional flexibility is required. For example, in seismic-prone regions, rebars can be concentrated in critical areas such as the joints or corners of a building. This placement helps to dissipate the energy generated during an earthquake, allowing the structure to deform and absorb the seismic forces without collapsing. This flexibility provided by the steel rebars helps to enhance the seismic resistance of the concrete structure. In summary, steel rebars provide flexibility to concrete structures by increasing their tensile strength, creating a reinforced concrete frame, and allowing for strategic placement to enhance specific areas of flexibility. This flexibility helps concrete structures withstand various loads, adapt to different stresses, and improve their overall strength and durability.
Q: What is the maximum diameter of steel rebars available in the market?
The maximum diameter of steel rebars available in the market can vary, but commonly ranges from 40mm to 50mm.
Q: What are the common methods of cutting steel rebars on construction sites?
Cutting steel rebars on construction sites involves several common methods, each chosen based on project requirements and available equipment. One commonly chosen method is the use of a rebar cutter. This handheld tool, specifically designed for cutting steel rebars, is operated manually and can easily cut through rebars of varying diameters. Its portability and ease of use make it convenient for on-site applications. Another method involves the use of a chop saw, also known as a cut-off saw or an abrasive saw. This technique utilizes a high-speed abrasive disc to make precise cuts on the steel rebars. Chop saws are ideal when accurate and clean cuts are needed, especially when multiple rebars must be cut to the same length. Oxy-fuel cutting presents another option for cutting steel rebars. This method employs a torch that combines oxygen and a fuel gas, typically acetylene, to create a high-temperature flame. The intense heat generated by the torch effectively cuts through steel rebars of varying thicknesses. Oxy-fuel cutting is particularly useful when rapid cutting or dealing with thicker rebars is necessary. Plasma cutting, a popular method, utilizes a high-velocity jet of ionized gas called plasma to melt and remove the metal. This technique is suitable for cutting rebars of different thicknesses and achieves precise and clean cuts. It is commonly employed when working with rebars that have intricate shapes or when fast and accurate cutting is required. It is essential to adhere to safety precautions when cutting steel rebars on construction sites. These precautions include wearing appropriate personal protective equipment, such as safety glasses, gloves, and hearing protection. Moreover, proper training and supervision are crucial to ensure the correct use of cutting equipment and minimize the risk of accidents or injuries.
Q: Are steel rebars suitable for reinforcement in theme parks and amusement centers?
Yes, steel rebars are suitable for reinforcement in theme parks and amusement centers. Steel rebars offer high strength and durability, making them ideal for heavily loaded structures and areas with high foot traffic. They can effectively enhance the structural integrity and ensure the safety of buildings and rides in theme parks and amusement centers.
Q: Can steel rebars be used in tunneling and mining operations?
Steel rebars have a wide range of applications, including tunneling and mining operations. These steel bars, typically used for reinforcing concrete structures, can also be utilized in underground construction projects like tunnels and mines. By incorporating rebars into these environments, additional strength and stability are provided to the structures, ensuring durability and safety. In tunneling projects, it is common to embed rebars in shotcrete or concrete linings to enhance the structural integrity of the tunnel walls and prevent collapse. Similarly, in mining operations, rebars are used to reinforce the roofs, walls, and support structures within the mine, protecting against potential hazards such as rockfalls and cave-ins. The use of steel rebars is essential in maintaining the integrity and stability of these underground structures during tunneling and mining operations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords