• Statcon Solar Inverter - Three Phase Solar Inverter Made in China System 1
  • Statcon Solar Inverter - Three Phase Solar Inverter Made in China System 2
  • Statcon Solar Inverter - Three Phase Solar Inverter Made in China System 3
Statcon Solar Inverter - Three Phase Solar Inverter Made in China

Statcon Solar Inverter - Three Phase Solar Inverter Made in China

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
0 watt
Supply Capability:
10000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Three Phase Solar Inverter

Solar ac power system consists of solar panels, charge controllers, inverter and battery; Solar energy does not include inverter dc power system. Inverter is a kind of power conversion device, inverter by incentives can be divided into self-excited oscillation inverter and separately excited oscillation inverter.

 

Features of Three Phase Solar Inverter

Standard 10 years warranty, 5-15 years optional

Built-in Gprs as option

Built-in Wifi as option

External Inductor

Smaller and lighter, only 22kg

High performance DSP for algorithm control

VDE-AR-N 4105 certification

New topology design

Dual MPPT design

IP65 waterproof and dustproof level

Multi-button touch interface

LCD screen visible at night

Have anti-shading function

 

Advantages of Three Phase Solar Inverter

Longer life cycle

Plug and play

Free monitoring through our webportal

Very lower internal temperature

Easy transportation and installation

Faster CPU speed

Adjustable active and reactive power

Maximum conversion effciency up to 97.6%,Euro up to 96.8%

More flexible system design

Maximized system profit

User friendly operation

24 hour operation data readable on screen

Suitable to complex installation environment

 

Technical Data of Three Phase Solar Inverter

 

TypeOmniksol-5k-TL2-3P
Input(DC)
Max.PV Power5150W
Max,DC Voltage1000V
Nominal DC Voltage640V
Operating MPPT Voltage Range150-800V
MPPT Voltage Range at Nominal Power260-800V
Start up DC Voltage 250V
Turn off DC Voltage150V
Max, DC Current(A/B)11A/11A
Max, Short Cicuit Current for each MPPT16A/16A
Number of MPP trackers2
Max, Input Power for each MPPT*5150W*
Number of DC ConnectionA:2/B:2
DC Connection TypeMC4 connector

 

Output(AC)
Max,AC Apparent Power5000VA
Nominal AC Power (cos phi = 1)5000W
Nominal AC Current7.2A
Nominal AC Voltage3/N/PE;220/380V
3/N/PE;230/400V
3/N/PE;240/415V
Nominal Grid Frequency50Hz/60Hz
Max, AC Current8.8A
Grid Voltage Range**185-276V
Grid Frequency Range**45-55Hz/55-65Hz
Power Factor0.9 capacitive... 0.9 inductive
Total Harmonic Distortion(THD)<2%
Feed in Starting Power30W
Night time Power Consumption<1W
Standby Consumption<10W
AC Connection TypePlug-in connertor

 

 

Efficiency
Max,Efficiency97.6%
Euro Efficiency96.8%
MPPT Efficiency99.9%

 

Safety and Protection
DC Insulation MonitoringYes
DC SwitchOptional
Residual Current Monitoring Unit (RCMU)Integrated
Grid Monitoring with Anti-islandingYes
Electricity Fuse ProtectionYes
Protection ClassⅠ(According to IEC 62103)
Overvoltage CategoryⅢ(According to IEC 62109-1)

 

Reference Standard
Safety StandardEN 62109, AS/NZS 3100
EMC StandardEN 6100-6-1, EN 6100-6-2, EN 6100-6-3 EN 6100-6-4, EN 6100-3-2, EN 6100-3-3
Grid StandardVDE-AR-N4105. VDE-0126-1-1,G83/1,EN 50438,RD1699,CEI 0-21, AS4777,C10/C11
Physical Structure
Dimensions352x421x172.5mm
Weight22kg
Environmental Protection RatingIP 65 (According to IEC 60529)
Cooling ConceptNatural convection
Mounting InformationWall bracket

 

General Data
Operating Temperature Range-25℃ to +60℃(derating above 45℃)
Relative Humidity0% to 98%, no condensation
Max. Altitude (above sea level)2000m
Noise Type<40dB
Isolation TypeTransformerless
Display20 x 4 LCD (800x480 TFT Graphic Display optional)
Data CommunicationRS485(WiFi, GRPS optional)
Computer CommunicationUSB
Standard Warranty10 Years (5-15 years optional)

 

IMages of Three Phase Solar Inverter

Three Phase Solar Inverter made in China

Three Phase Solar Inverter made in China

Three Phase Solar Inverter made in China

 

FAQ

Q: Do you have the CE, TUV, UL Certification?

A: We’ve already passed all the tests, and any certificate is available.

Q: Have you ever sold your products to companies in my country?

A: Of course, we have customers in all general PV markets, but I think we should expand our market share along with the market growth.

Q: When did your company set up?  You are a new company, how can I believe your quality?

A: We entered into Solar PV industry in 2005, now we have several plants in manufacturing of a-Si and c-Si panels, and our capacity is 220MW per year. Till now we have already passed all the tests by authorized laboratories, e.g. TUV, CE, UL.

 Q: Can you help us install the module if we cooperate with you?

A: We haven’t entered into installation sector, but we have the plan in near future.

Q: How do you pack your products?

A: We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Q: Can you do OEM for us?

A: Yes, we can.

Q: Can we visit your factory?

A: Surely, I will arrange the trip basing on your business schedule.

 

Q: How do you calculate the efficiency loss due to temperature for a solar inverter?
To calculate the efficiency loss due to temperature for a solar inverter, you need to determine the temperature coefficient of the inverter. This coefficient represents the rate at which the inverter's efficiency decreases with an increase in temperature. Once you have the temperature coefficient, you can calculate the efficiency loss by multiplying it with the difference between the actual operating temperature and the reference temperature. The reference temperature is typically the standard test condition temperature, which is usually around 25 degrees Celsius. The formula to calculate the efficiency loss is as follows: Efficiency Loss = Temperature Coefficient × (Operating Temperature - Reference Temperature) By plugging in the appropriate values, you can determine the efficiency loss due to temperature for a solar inverter.
Q: Are there any noise emissions from a solar inverter?
Yes, solar inverters do produce some noise emissions. However, the noise levels are generally very low and often not noticeable, as the inverters are designed to operate quietly.
Q: What is the role of Maximum Power Point Tracking (MPPT) in a solar inverter?
The role of Maximum Power Point Tracking (MPPT) in a solar inverter is to optimize the efficiency and performance of the solar panel system. MPPT technology allows the solar inverter to constantly adjust the operating voltage and current of the solar panels to ensure they are operating at their maximum power point, where the panel generates the most power. This increases the overall energy production of the solar system and maximizes the utilization of the available sunlight.
Q: What is the role of a galvanic isolation transformer in a solar inverter?
The role of a galvanic isolation transformer in a solar inverter is to provide electrical isolation between the input (solar panels) and the output (power grid). This isolation helps in preventing any electrical noise, surges, or ground loops from affecting the solar inverter or the power grid, ensuring safe and reliable operation. Additionally, the galvanic isolation transformer helps in maintaining the required level of insulation and protection, complying with safety standards and regulations.
Q: What are the potential risks of overloading a solar inverter?
The potential risks of overloading a solar inverter include overheating, reduced lifespan of the inverter, and even permanent damage to the equipment. Overloading can also result in power fluctuations and instability in the electrical system, leading to potential safety hazards. It is crucial to ensure that the solar inverter is appropriately sized and capable of handling the electrical load to avoid these risks.
Q: Can a solar inverter be used with different types of grounding systems?
Yes, a solar inverter can be used with different types of grounding systems. Solar inverters are designed to be flexible and adaptable to various electrical systems and grounding configurations. They can be used with grounded, ungrounded, or impedance grounded systems, allowing for compatibility across different types of grounding systems.
Q: How does a solar inverter handle voltage fluctuation during cloud cover?
A solar inverter handles voltage fluctuation during cloud cover by continuously monitoring the incoming solar energy and adjusting its power output accordingly. When the sunlight reduces due to cloud cover, the inverter senses the drop in voltage and adapts by reducing its power output to match the available solar energy. This ensures that the voltage remains stable and the system operates efficiently even in varying weather conditions.
Q: Can a solar inverter provide power during a blackout?
No, a solar inverter cannot provide power during a blackout.
Q: What is the role of a solar inverter in protecting the electrical grid?
The role of a solar inverter in protecting the electrical grid is to convert the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that is compatible with the grid. It ensures that the solar power generated is synchronized with the grid's voltage and frequency, allowing for seamless integration and preventing any disruptions or voltage fluctuations that could potentially harm the grid. Additionally, solar inverters have built-in safety mechanisms such as anti-islanding protection, which disconnects the solar system from the grid during a power outage, ensuring the safety of utility workers who may be working on the grid. Overall, solar inverters play a crucial role in ensuring the stability, reliability, and safety of the electrical grid when incorporating solar energy.
Q: Can a solar inverter be used with a solar-powered electric fence system?
Yes, a solar inverter can be used with a solar-powered electric fence system. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) to power the electric fence system. This allows the solar panels to efficiently charge the battery and power the electric fence, providing a renewable and sustainable energy solution.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords