• 12 Volt Solar Inverter CNBM-5000MTL Grid Tied Solar Inverter System 1
  • 12 Volt Solar Inverter CNBM-5000MTL Grid Tied Solar Inverter System 2
  • 12 Volt Solar Inverter CNBM-5000MTL Grid Tied Solar Inverter System 3
12 Volt Solar Inverter CNBM-5000MTL Grid Tied Solar Inverter

12 Volt Solar Inverter CNBM-5000MTL Grid Tied Solar Inverter

Ref Price:
get latest price
Loading Port:
Shenzhen
Payment Terms:
TT or LC
Min Order Qty:
1 unit pc
Supply Capability:
5000Units/per month pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Features of Grid Tied Solar Inverter CNBM-5000MTL

CNBM-5000MTL is a good chice with cost performance solar inverter with 97.9% effciency.

Maximum efficiency of 97.8% and wide input voltage range,

Internal DCswitch,MTL-String,

Sound control,

Bluetooth/RF technology /Wi-Fi

Transformerless,GT topology 

With a R&D team more than 100 engineers,40% of the staff, who has been deeply engaged in the photovoltaic industry for 10 years, CNBM takes the mission to increase the inverter availability and efficiency, putting continuous innovation to make CNBM inverter easier for installation and operation, and more cost-effective for solar plant construction.The full range of CNBM single phase inverters has received VDE, CE, G83/1, G59/2, ENEL2010, VDE4105, C10/C11, AS4777 etc.

Technical data of Grid Tied Solar Inverter CNBM-5000MTL

Model

CNBM-4600MTL

CNBM-5000MTL

Input data (DC)

 

 

Max. DC power

4800W

5200W

Max. DC voltage

600V

600V

Start voltage

150V

150V

PV voltage range

100V-600V

100V-600V

Max. input current

15A

15A

Number of MPP trackers /strings per MPP tracker

2/2

2/2

Output (AC)

 

Rated AC output power

4600W

5000W

Max. AC power

4600W

5000W

Max. output current

23A

25A

Power factor

1

1

THDI

<3%

<3%

AC connection

Single phase

Single phase

Efficiency

 

Max. efficiency

97.9%

97.9%

Euro weighted efficiency

97.4%

97.4%

MPPT efficiency

99.5%

99.5%

Protection devices

 

Output over voltage protection-varistor

yes

yes

Ground fault monitoring

yes

yes

Grid monitoring

yes

yes

General Data

 

Dimensions (W / H / D) in mm

360/510/188

360/510/188

Weight

24KG

24KG

Operating temperature range

–25°C ... +60°C

–25°C ... +60°C

Altitude

2000m(6560ft) without derating

Self-Consumption night

< 0.5 W

< 0.5 W

Topology

Transformerless

Cooling concept

Natural

Natural

Environmental Protection Rating

IP65

IP65

Features

 

DC connection

H4/MC4(opt)

H4/MC4(opt)

Display

LCD

LCD

Interfaces: RS485/RS232/Bluetooth / RF/Zigbee/Wifi

yes/yes/opt/opt/opt

Warranty: 5 years / 10 years

yes /opt

Certificates and approvals

CEVDE 0126-1-1DK5940G83/1-1G59/2RD1663EN50438

VDE-AR-N4105CEI-021IEC-62109ENEL-Guide

CNBM-5000MTL is simple national setting of line supply monitoring, Easy country configuration, with Multi-language,display, currently available for most of the countries over the world.With technical creativity and scientific management, the factory established first class R&D and test centers, as well as management and R&D teams comprising of PhDs and masters with overseas qualification.

Figure 1 the test  of Grid Tied Solar Inverter CNBM-5000MTL

Grid Tied Solar Inverter CNBM-5000MTL 

Figure 2 The production of Grid Tied Solar Inverter CNBM-5000MTL

 Grid Tied Solar Inverter CNBM-5000MTL

Q: What are the potential risks of electrical shock from a solar inverter?
The potential risks of electrical shock from a solar inverter include accidental contact with live electrical components, inadequate grounding or improper wiring, and failure to follow safety precautions during installation or maintenance. Additionally, poor maintenance, lack of training, or using faulty equipment can further increase the risk of electrical shock.
Q: What are the safety measures to consider when installing a solar inverter?
Some safety measures to consider when installing a solar inverter include: 1. Proper grounding: Ensure that the inverter is properly grounded to prevent electrical shocks and to maintain system stability. 2. Compliance with electrical codes: Adhere to local electrical codes and regulations to ensure safe installation and minimize the risk of electrical hazards. 3. Disconnecting power: Before starting the installation, make sure to disconnect power from the solar panels and the grid to avoid electrical accidents. 4. Proper ventilation: Install the inverter in a well-ventilated area to prevent overheating and potential fire hazards. 5. Adequate wiring: Use appropriate wire sizes and proper connections to handle the current capacity of the inverter and minimize the risk of electrical short circuits or fires. 6. Surge protection: Install surge protectors to safeguard the inverter and connected devices against power surges and lightning strikes. 7. Regular maintenance: Perform routine maintenance and inspections to ensure the inverter is functioning properly and to identify any potential safety issues. 8. Qualified installation: It is recommended to have the solar inverter installed by a qualified professional who is knowledgeable about electrical systems and safety measures. By following these safety measures, the risk of electrical accidents or system malfunctions can be minimized, ensuring a safe and reliable solar inverter installation.
Q: Can a solar inverter be used in areas with high levels of electromagnetic interference (EMI)?
Yes, a solar inverter can be used in areas with high levels of electromagnetic interference (EMI). However, it is important to ensure that the inverter is designed and equipped to handle such conditions. Certain models of solar inverters are specifically designed to mitigate the effects of EMI and provide reliable performance even in challenging electromagnetic environments.
Q: Can a solar inverter be used with different grid voltages?
No, a solar inverter cannot be used with different grid voltages. Solar inverters are designed to convert the DC power generated by solar panels into AC power that matches the voltage and frequency of the grid it is connected to. Using a solar inverter with different grid voltages can result in inefficient operation or even damage to the inverter. It is important to ensure that the solar inverter is compatible with the specific grid voltage before installation.
Q: What is the role of power factor correction in a solar inverter?
The role of power factor correction in a solar inverter is to improve the efficiency and performance of the inverter by correcting and optimizing the power factor of the electrical system. By adjusting the phase relationship between voltage and current, power factor correction ensures that the inverter draws and supplies power more effectively, reducing energy losses, improving power quality, and minimizing harmonics in the system. This helps to maximize the overall power output and reliability of the solar inverter, leading to better energy conversion and utilization.
Q: What is the role of a solar inverter in a solar power system?
The role of a solar inverter in a solar power system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be used to power appliances and devices in homes or businesses. It also regulates and optimizes the flow of electricity to ensure maximum efficiency and safety in the solar power system.
Q: Can a solar inverter be used with a battery backup system?
Yes, a solar inverter can be used with a battery backup system. A solar inverter is responsible for converting the DC power generated by solar panels into AC power used in our homes. By connecting a battery backup system to the solar inverter, excess solar energy can be stored in batteries for later use, providing power during periods of low or no sunlight, such as at night or during power outages.
Q: How does a solar inverter protect against short circuits?
A solar inverter protects against short circuits by monitoring the electrical current flow and detecting any abnormal increase in current caused by a short circuit. Once a short circuit is detected, the inverter immediately shuts down the power output to prevent any damage to the solar panels, the inverter itself, or the electrical system.
Q: Can a solar inverter be used in a floating solar system?
Yes, a solar inverter can be used in a floating solar system. The purpose of a solar inverter is to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. In a floating solar system, the solar panels are mounted on floating platforms or structures on water bodies. The solar inverter is still required to convert the DC power generated by the panels into AC power that can be used by the electrical grid or connected devices.
Q: Can a solar inverter be used with a solar-powered data center?
Yes, a solar inverter can be used with a solar-powered data center. A solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. In the case of a solar-powered data center, the solar inverter would play a crucial role in converting the DC electricity produced by the solar panels into AC electricity that can be used to power the data center's servers, cooling systems, and other equipment.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords