• Solar Inverter - 3 Phase Inverter Second Generation 4k Solar Inverter Made in China System 1
  • Solar Inverter - 3 Phase Inverter Second Generation 4k Solar Inverter Made in China System 2
  • Solar Inverter - 3 Phase Inverter Second Generation 4k Solar Inverter Made in China System 3
Solar Inverter - 3 Phase Inverter Second Generation 4k Solar Inverter Made in China

Solar Inverter - 3 Phase Inverter Second Generation 4k Solar Inverter Made in China

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
0 watt
Supply Capability:
10000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Three Phase Inverter Second Generation 4k Solar Inverter

Solar ac power system consists of solar panels, charge controllers, inverter and battery; Solar energy does not include inverter dc power system. Inverter is a kind of power conversion device, inverter by incentives can be divided into self-excited oscillation inverter and separately excited oscillation inverter.

 

Features of Three Phase Inverter Second Generation 4k Solar Inverter

Standard 10 years warranty, 5-15 years optional

Built-in Gprs as option

Built-in Wifi as option

Smaller and lighter, only 18kg

High performance DSP for algorithm control

VDE-AR-N 4105 certification

New topology design

Dual MPPT design

Multi-button touch interface

LCD screen visible at night

Have anti-shading function

 

Advantages of Three Phase Inverter Second Generation 4k Solar Inverter

Longer life cycle

Plug and play

Free monitoring through our webportal

Very lower internal temperature

Easy transportation and installation

Faster CPU speed

Adjustable active and reactive power

Maximum conversion effciency up to 98.3%,Euro up to 97.7%

More flexible system design

User friendly operation

 

Technical Data of Three Phase Inverter Second Generation 4k Solar Inverter

 

TypeOmniksol-4k-TL2-TH
Input(DC)
Max.PV Power4150W
Max,DC Voltage1000V
Nominal DC Voltage640V
Operating MPPT Voltage Range150-800V
MPPT Voltage Range at Nominal Power200-800V
Start up DC Voltage 250V
Turn off DC Voltage150V
Max, DC Current(A/B)14A/14A
Max, Short Cicuit Current for each MPPT20A/20A
Number of MPP trackers2
Number of DC ConnectionA:2/B:2
DC Connection TypeMC4 connector

 

Output(AC)
Max,AC Apparent Power4000VA
Nominal AC Power (cos phi = 1)4000W
Nominal Grid Voltage220V/230V/240V
Nominal Grid Frequency50Hz/60Hz
Max, AC Current6.1A
Grid Voltage Range**185-276V
Grid Frequency Range**45-55Hz/55-65Hz
Power Factor0.9 capacitive... 0.9 inductive
Total Harmonic Distortion(THD)<2%
Feed in Starting Power30W
Night time Power Consumption<1W
Standby Consumption<10W
AC Connection TypePlug-in connertor

 

 

Efficiency
Max,Efficiency98.0%
Euro Efficiency97.5%
MPPT Efficiency99.9%

 

Safety and Protection
DC Insulation MonitoringYes
DC SwitchOptional
Residual Current Monitoring Unit (RCMU)Integrated
Grid Monitoring with Anti-islandingYes
Electricity Fuse ProtectionYes
Protection ClassⅠ(According to IEC 62103)
Overvoltage CategoryPVⅡ/Mains Ⅲ(According to IEC 62109-1)

 

Reference Standard
Safety StandardEN 62109, AS/NZS 3100
EMC StandardEN 6100-6-1, EN 6100-6-2, EN 6100-6-3 EN 6100-6-4, EN 6100-3-2, EN 6100-3-3
Grid StandardVDE-AR-N4105. VDE-0126-1-1,G83/1,EN 50438,RD1699,CEI 0-21, AS4777,C10/C11
Physical Structure
Dimensions352x421x154.5mm
Weight18kg
Environmental Protection RatingIP 65 (According to IEC 60529)
Cooling ConceptNatural convection
Mounting InformationWall bracket

 

General Data
Operating Temperature Range-25℃ to +60℃(derating above 45℃)
Relative Humidity0% to 98%, no condensation
Max. Altitude (above sea level)2000m
Noise Type<40dB
Isolation TypeTransformerless
Display20 x 4 LCD (800x480 TFT Graphic Display optional)
Data CommunicationRS485(WiFi, GRPS optional)
Computer CommunicationUSB
Standard Warranty10 Years (5-15 years optional)

 

IMages of Three Phase Inverter Second Generation 4k Solar Inverter

Three Phase Inverter Second Generation 4k Solar Inverter made in China

Three Phase Inverter Second Generation 4k Solar Inverter made in China

Three Phase Inverter Second Generation 4k Solar Inverter made in China

 

FAQ

Q: Do you have the CE, TUV, UL Certification?

A: We’ve already passed all the tests, and any certificate is available.

Q: Have you ever sold your products to companies in my country?

A: Of course, we have customers in all general PV markets, but I think we should expand our market share along with the market growth.

Q: When did your company set up?  You are a new company, how can I believe your quality?

A: We entered into Solar PV industry in 2005, now we have several plants in manufacturing of a-Si and c-Si panels, and our capacity is 220MW per year. Till now we have already passed all the tests by authorized laboratories, e.g. TUV, CE, UL.

 Q: Can you help us install the module if we cooperate with you?

A: We haven’t entered into installation sector, but we have the plan in near future.

Q: How do you pack your products?

A: We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Q: Can you do OEM for us?

A: Yes, we can.

Q: Can we visit your factory?

A: Surely, I will arrange the trip basing on your business schedule.

 

Q: What is the role of a grid-tie inverter in a solar PV system?
The role of a grid-tie inverter in a solar PV system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity that can be fed directly into the electrical grid. It synchronizes the electricity produced by the solar panels with the grid's frequency and voltage, allowing the excess energy to be sent back to the grid for use by other consumers.
Q: Can a solar inverter be used with battery storage?
Yes, a solar inverter can be used with battery storage. In fact, integrating a solar inverter with battery storage systems allows for storing excess solar energy generated during the day and using it at night or during times of high energy demand. This combination enables greater energy independence and the ability to use renewable energy even when the sun is not shining.
Q: Can a solar inverter be used with different types of electrical appliances?
Yes, a solar inverter can be used with different types of electrical appliances. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that is compatible with standard household appliances. As long as the electrical appliances operate on AC power within the inverter's specified power range, they can be used with a solar inverter.
Q: Can a solar inverter be used with different types of tracking systems?
Yes, a solar inverter can be used with different types of tracking systems. The function of a solar inverter is to convert the DC (direct current) generated by the solar panels into AC (alternating current) that can be used to power electrical devices. As long as the tracking system is capable of generating DC power from the solar panels, the solar inverter can be used to convert it into usable AC power.
Q: What is the role of a power quality analyzer in a solar inverter?
The role of a power quality analyzer in a solar inverter is to monitor and analyze the quality of the electrical power being generated by the solar panels. It measures various parameters such as voltage, current, frequency, harmonics, and power factor to ensure that the power being generated is within acceptable limits and meets the required standards. By detecting any deviations or abnormalities in the power quality, the analyzer helps in identifying and rectifying issues that could affect the performance and efficiency of the solar inverter and the overall solar power system.
Q: What is the role of transformerless design in a solar inverter?
The role of transformerless design in a solar inverter is to eliminate the need for a bulky and expensive transformer, resulting in a more compact, lightweight, and cost-effective solution. Transformerless inverters use advanced electronic circuitry to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power household appliances or fed back into the grid. This design allows for higher efficiency, lower energy losses, and increased flexibility in system design and installation.
Q: Can a solar inverter be used with solar-powered water heaters?
No, a solar inverter cannot be directly used with solar-powered water heaters. The solar inverter is designed to convert the DC power generated by solar panels into AC power for general electrical use in households. On the other hand, solar-powered water heaters utilize direct thermal energy from the sun to heat water, without involving the need for converting DC power to AC power.
Q: What is the importance of voltage and frequency control in a solar inverter?
The importance of voltage and frequency control in a solar inverter is crucial for maintaining the stability and reliability of the power output. By regulating the voltage and frequency levels, the inverter ensures that the electricity generated from the solar panels is in sync with the grid requirements. This control is necessary to prevent damage to electrical appliances and equipment, maintain grid stability, and enable seamless integration of solar energy into the existing power system.
Q: Can a solar inverter be used in regions with high levels of dust or debris?
Yes, a solar inverter can be used in regions with high levels of dust or debris. However, it is important to regularly clean and maintain the inverter to prevent any potential issues caused by the accumulation of dust or debris, which could affect its efficiency and performance.
Q: What are the key differences between a central inverter and a string inverter?
The key differences between a central inverter and a string inverter lie in their design and functionality. A central inverter is a single large inverter that is typically installed at a central location in the solar power system. It receives the DC power generated by multiple solar panels connected in series, and then converts it into AC power for use in the electrical grid. Central inverters are more suitable for large-scale solar installations as they can handle higher power outputs. On the other hand, a string inverter is a smaller inverter that is installed close to the solar panels. It works by converting the DC power generated by a string of panels, typically 8 to 12, into AC power. String inverters are commonly used in residential or smaller commercial solar installations. One notable difference is the location of the inverters. Central inverters are typically installed in a dedicated room or enclosure, away from the solar panels, whereas string inverters are generally mounted either on the wall or directly on solar panel mounting racks. Another difference is the impact of shading or panel malfunction. In a central inverter system, if one panel is shaded or malfunctions, it affects the output of the entire string of panels. In contrast, with a string inverter system, the impact is limited to only the affected string, allowing other strings to continue generating power efficiently. Additionally, string inverters offer better monitoring capabilities as they can provide real-time data for each individual string of panels, allowing for easier troubleshooting and maintenance. Central inverters, on the other hand, provide a single output value for the entire solar array. Overall, the choice between a central inverter and a string inverter depends on the scale of the solar installation, the available space, and the specific requirements of the project.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords