• Solar Inverter - 3 Phase Inverter Second Generation 4k Solar Inverter Made in China System 1
  • Solar Inverter - 3 Phase Inverter Second Generation 4k Solar Inverter Made in China System 2
  • Solar Inverter - 3 Phase Inverter Second Generation 4k Solar Inverter Made in China System 3
Solar Inverter - 3 Phase Inverter Second Generation 4k Solar Inverter Made in China

Solar Inverter - 3 Phase Inverter Second Generation 4k Solar Inverter Made in China

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
0 watt
Supply Capability:
10000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Three Phase Inverter Second Generation 4k Solar Inverter

Solar ac power system consists of solar panels, charge controllers, inverter and battery; Solar energy does not include inverter dc power system. Inverter is a kind of power conversion device, inverter by incentives can be divided into self-excited oscillation inverter and separately excited oscillation inverter.

 

Features of Three Phase Inverter Second Generation 4k Solar Inverter

Standard 10 years warranty, 5-15 years optional

Built-in Gprs as option

Built-in Wifi as option

Smaller and lighter, only 18kg

High performance DSP for algorithm control

VDE-AR-N 4105 certification

New topology design

Dual MPPT design

Multi-button touch interface

LCD screen visible at night

Have anti-shading function

 

Advantages of Three Phase Inverter Second Generation 4k Solar Inverter

Longer life cycle

Plug and play

Free monitoring through our webportal

Very lower internal temperature

Easy transportation and installation

Faster CPU speed

Adjustable active and reactive power

Maximum conversion effciency up to 98.3%,Euro up to 97.7%

More flexible system design

User friendly operation

 

Technical Data of Three Phase Inverter Second Generation 4k Solar Inverter

 

TypeOmniksol-4k-TL2-TH
Input(DC)
Max.PV Power4150W
Max,DC Voltage1000V
Nominal DC Voltage640V
Operating MPPT Voltage Range150-800V
MPPT Voltage Range at Nominal Power200-800V
Start up DC Voltage 250V
Turn off DC Voltage150V
Max, DC Current(A/B)14A/14A
Max, Short Cicuit Current for each MPPT20A/20A
Number of MPP trackers2
Number of DC ConnectionA:2/B:2
DC Connection TypeMC4 connector

 

Output(AC)
Max,AC Apparent Power4000VA
Nominal AC Power (cos phi = 1)4000W
Nominal Grid Voltage220V/230V/240V
Nominal Grid Frequency50Hz/60Hz
Max, AC Current6.1A
Grid Voltage Range**185-276V
Grid Frequency Range**45-55Hz/55-65Hz
Power Factor0.9 capacitive... 0.9 inductive
Total Harmonic Distortion(THD)<2%
Feed in Starting Power30W
Night time Power Consumption<1W
Standby Consumption<10W
AC Connection TypePlug-in connertor

 

 

Efficiency
Max,Efficiency98.0%
Euro Efficiency97.5%
MPPT Efficiency99.9%

 

Safety and Protection
DC Insulation MonitoringYes
DC SwitchOptional
Residual Current Monitoring Unit (RCMU)Integrated
Grid Monitoring with Anti-islandingYes
Electricity Fuse ProtectionYes
Protection ClassⅠ(According to IEC 62103)
Overvoltage CategoryPVⅡ/Mains Ⅲ(According to IEC 62109-1)

 

Reference Standard
Safety StandardEN 62109, AS/NZS 3100
EMC StandardEN 6100-6-1, EN 6100-6-2, EN 6100-6-3 EN 6100-6-4, EN 6100-3-2, EN 6100-3-3
Grid StandardVDE-AR-N4105. VDE-0126-1-1,G83/1,EN 50438,RD1699,CEI 0-21, AS4777,C10/C11
Physical Structure
Dimensions352x421x154.5mm
Weight18kg
Environmental Protection RatingIP 65 (According to IEC 60529)
Cooling ConceptNatural convection
Mounting InformationWall bracket

 

General Data
Operating Temperature Range-25℃ to +60℃(derating above 45℃)
Relative Humidity0% to 98%, no condensation
Max. Altitude (above sea level)2000m
Noise Type<40dB
Isolation TypeTransformerless
Display20 x 4 LCD (800x480 TFT Graphic Display optional)
Data CommunicationRS485(WiFi, GRPS optional)
Computer CommunicationUSB
Standard Warranty10 Years (5-15 years optional)

 

IMages of Three Phase Inverter Second Generation 4k Solar Inverter

Three Phase Inverter Second Generation 4k Solar Inverter made in China

Three Phase Inverter Second Generation 4k Solar Inverter made in China

Three Phase Inverter Second Generation 4k Solar Inverter made in China

 

FAQ

Q: Do you have the CE, TUV, UL Certification?

A: We’ve already passed all the tests, and any certificate is available.

Q: Have you ever sold your products to companies in my country?

A: Of course, we have customers in all general PV markets, but I think we should expand our market share along with the market growth.

Q: When did your company set up?  You are a new company, how can I believe your quality?

A: We entered into Solar PV industry in 2005, now we have several plants in manufacturing of a-Si and c-Si panels, and our capacity is 220MW per year. Till now we have already passed all the tests by authorized laboratories, e.g. TUV, CE, UL.

 Q: Can you help us install the module if we cooperate with you?

A: We haven’t entered into installation sector, but we have the plan in near future.

Q: How do you pack your products?

A: We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Q: Can you do OEM for us?

A: Yes, we can.

Q: Can we visit your factory?

A: Surely, I will arrange the trip basing on your business schedule.

 

Q: How does a solar inverter handle variations in temperature?
A solar inverter manages variations in temperature by having built-in thermal management systems that ensure optimal functioning within a specified temperature range. These systems include heat sinks, fans, or liquid cooling to dissipate excess heat generated during operation. Additionally, advanced inverters incorporate temperature sensors and algorithms to monitor and adjust their performance accordingly, maintaining efficiency and protecting the internal components from overheating or freezing in extreme temperatures.
Q: Can a solar inverter be used in a three-phase power system?
Yes, a solar inverter can be used in a three-phase power system. In fact, three-phase solar inverters are commonly used in commercial and industrial applications where three-phase power is utilized. These inverters convert the DC power generated by solar panels into AC power that can be seamlessly integrated into the three-phase power grid.
Q: Can a solar inverter be controlled remotely?
Yes, a solar inverter can be controlled remotely. With the help of advanced monitoring systems and communication technologies, users can remotely access and control their solar inverters. This allows for convenient monitoring of power generation, performance optimization, and troubleshooting from any location with internet connectivity.
Q: Are there any fire safety concerns associated with solar inverters?
Solar inverters do pose some fire safety concerns. Although they are not typically a fire hazard themselves, there are a few potential risks to be aware of. Firstly, if the solar inverter is installed incorrectly, it can cause electrical problems that may lead to a fire. To prevent this, it is essential to hire a qualified and certified professional who can ensure that all electrical connections are secure and meet the necessary standards. Secondly, if the solar inverter is located in an area that experiences high temperatures or excessive heat, there is a risk of overheating. Inverters generate heat as they convert direct current (DC) from solar panels into alternating current (AC) for use in homes or businesses. If the inverter is not adequately ventilated or is exposed to extreme heat, it can overheat and potentially ignite a fire. Furthermore, if the inverter is faulty or damaged, it can increase the risk of fire. Regular maintenance and inspections of the solar inverter can help identify any potential issues and ensure its safe operation. To address these fire safety concerns, it is crucial to adhere to proper installation guidelines, regularly inspect and maintain the inverter, and ensure it is in a well-ventilated location away from sources of excessive heat. It is also advisable to have a fire extinguisher nearby and establish a fire safety plan in case of emergencies.
Q: Can a solar inverter be used with solar-powered outdoor lighting?
Yes, a solar inverter can be used with solar-powered outdoor lighting. A solar inverter is responsible for converting the DC (direct current) electricity produced by solar panels into AC (alternating current) electricity that can be used to power various devices, including outdoor lighting systems. This allows the solar-powered outdoor lighting to function efficiently and effectively.
Q: Can a solar inverter be used with different battery chemistries?
Yes, a solar inverter can be used with different battery chemistries as long as the inverter is compatible with the specific battery chemistry and its voltage requirements. However, it is important to ensure that the inverter is designed to work efficiently with the particular battery chemistry to avoid any compatibility issues or potential damage to the system.
Q: Can a solar inverter be used in a community solar project?
Yes, a solar inverter can be used in a community solar project. A solar inverter is an essential component of a community solar project as it converts the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which can be used by the community or fed back into the grid.
Q: How does a solar inverter handle voltage and frequency regulation?
A solar inverter handles voltage and frequency regulation by converting the direct current (DC) generated by solar panels into alternating current (AC) that is suitable for use in homes and businesses. It ensures that the voltage and frequency of the AC output are within the acceptable range set by the grid or electrical appliances. This is achieved through the use of control circuitry and algorithms that continuously monitor and adjust the DC input to maintain a stable and consistent AC output.
Q: Can a solar inverter be used with different types of communication interfaces?
Yes, a solar inverter can be used with different types of communication interfaces. Many modern solar inverters are designed to be compatible with various communication protocols such as Wi-Fi, Ethernet, RS485, and Zigbee. This allows for easy integration and monitoring of the inverter with different types of communication systems and devices.
Q: Can a solar inverter be used in a smart grid system?
Yes, a solar inverter can be used in a smart grid system. A solar inverter is an essential component that converts the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. In a smart grid system, the solar inverter plays a crucial role in integrating renewable energy sources, such as solar power, with the grid. It allows for bidirectional flow of electricity, enabling excess energy generated by solar panels to be fed back into the grid and distributed to other consumers. Additionally, advanced smart grid systems can incorporate communication and control capabilities into solar inverters, enabling real-time monitoring, optimized energy management, and grid stability enhancement.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords