• 3000W Grid Tied Solar Inverter 3-Phase 12000W System 1
  • 3000W Grid Tied Solar Inverter 3-Phase 12000W System 2
  • 3000W Grid Tied Solar Inverter 3-Phase 12000W System 3
3000W Grid Tied Solar Inverter 3-Phase 12000W

3000W Grid Tied Solar Inverter 3-Phase 12000W

Ref Price:
get latest price
Loading Port:
Shenzhen
Payment Terms:
TT or LC
Min Order Qty:
1 unit pc
Supply Capability:
5000Units/per month pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Grid Tied Solar Inverter 3-phase 12000W

CNBM International Corporation (CNBM International) is the most important trading platform of CNBM Group Corporation, a state-owned company under the direct supervision of State-owned Assets Supervision and Administration Commission of the State Council.

With a R&D team more than 100 engineers,40% of the staff, who has been deeply engaged in the photovoltaic industry for 10 years, CNBM takes the mission to increase the inverter availability and efficiency, putting continuous innovation to make CNBM inverter easier for installation and operation, and more cost-effective for solar plant construction. The full range of CNBM single phase inverters has received VDE, CE, G83/1, G59/2, ENEL2010, VDE4105, C10/C11, AS4777 etc.

Maximum efficiency of 97.8% and wide input voltage range, Internal DCswitch,MTL-String, Sound control,Bluetooth/RF technology /WiFiTransformerless,GT topology

The Grid Connected Solar Inverter we can offer is 1.5kw to 20kw.

 

Introduction of Grid Tied Solar Inverter 3-phase 12000W

Maximum efficiency of 97.8% and wide input voltage range
Integrated DC switch-disconnected
MTL-String
Sound control
Bluetooth/RF technology /Wi-Fi
Transformerless GT topology
5 years warranty (10years as optional)

 

Datasheet of Grid Tied Solar Inverter 3-phase 12000W

Model

10000TL3-US

12000TL3-US

18000TL3-US

20000TL3-US

Input data(DC)

Max. DC Power

10500W

12500W

18750W

20850W

Max. DC voltage

600V

600V

600V

600V

Start voltage

120V

120V

120V

120V

PV voltage range

80V-600V

80V-600V

80V-600V

80V-600V

Max. input current of the MPP tracker A/tracker B

21A/21A

25A/25A

38A/38A

42A/42A

Number of MPP trackers/strings per MPP tracker

2/3

2/3

2/6

2/6

Output data(AC)

Nominal output power

10000W

12000W

18000W

20000W

Nominal AC voltage

480V

480V

480V

480V

AC voltage range

422-528VAC

422-528VAC

422-528VAC

422-528VAC

Nominal AC grid frequency

60 Hz

60 Hz

60 Hz

60 Hz

Max. output currentcos φ=1)

12.0A

14.5A

21.5A

24A

Power factor(cos φ)

>0.99        
(0.9 Leading to 0.9 Lagging)

>0.99        
(0.9 Leading to 0.9 Lagging)

>0.99        
(0.9 Leading to 0.9 Lagging)

>0.99        
(0.9 Leading to 0.9 Lagging)

Harmonics

<3%

<3%

<3%

<3%

Grid connection type

3/N/E

3/N/E

3/N/E

3/N/E

Efficiency

Max. efficiency

97%

97%

97.5%

97.5%

CEC-Weighted efficiency

95.5%

95.5%

96%

96.5%

MPPT efficiency

99.5%

99.5%

99.5%

99.5%

Protection devices

Input over voltage protection -DIN rail surge arrester(Option)

Class II

Class II

Class II

Class II

DC insulation measure

yes

yes

yes

yes

AC short circuit protection

yes

yes

yes

yes

Output over voltage protection -Varistor

yes

yes

yes

yes

Output over voltage protection -DIN rail surge arrester(Option)

Class II

Class II

Class II

Class II

String fuse type/size(Option)

15A/600VDC 10*38mm

15A/600VDC 10*38mm

15A/600VDC 10*38mm

15A/600VDC 10*38mm

General Data

Dimensions(W*H*D) in mm

530*705*247

530*705*247

650*740*247

650*740*247

Weight

46kg/101.5lb

46kg/101.5lb

63kg/138.9lb

63kg/138.9lb

Operating ambient temperature range

–25°C ... +60°C

–25°C ... +60°C

–25°C ... +60°C

–25°C ... +60°C

Altitude

≤2000m/6560ft

Self Consumption night

< 3 W

< 3 W

< 3 W

< 3 W

Topology

Transformerless

Cooling concept

Fan Cool

Fan Cool

Fan Cool

 Fan Cool

Electronics protection rating /connection area

NEMA 3R

NEMA 3R

NEMA 3R

NEMA 3R

Features

Display

Graphic

Graphic

Graphic

Graphic

Interface:RS232/RS485/ Bluetooth/RF/Zigbee/Wifi

yes/yes/opt/opt /opt/opt

Warranty:10 years /15 years

yes/opt

yes/opt

yes/opt

yes/opt

Certificates and approvals

UL1741,UL1998,IEEE1547,FCC part 15(class B),CSA C22.2 No.107.1

 

Picure1: Factory of Grid Tied Solar Inverter 3-phase 12000W

Grid Tied Solar Inverter 3-phase 12000W

 

Picture 2: Package of Grid Tied Solar Inverter 3-phase 12000W

Grid Tied Solar Inverter 3-phase 12000W

Q: Photovoltaic grid-connected inverter without DC emc how will happen
When solar or other light illuminates the PN junction of the semiconductor, a voltage (called a photogenerated voltage) occurs on both sides of the PN junction. This phenomenon is the famous photovoltaic effect.
Q: How is the efficiency of a solar inverter measured?
The efficiency of a solar inverter is typically measured by dividing the output power of the inverter by the input power, and then multiplying the result by 100 to get a percentage value.
Q: How does a solar inverter protect against power surges?
A solar inverter protects against power surges by using built-in surge protection devices such as metal oxide varistors (MOVs) or transient voltage suppressors (TVS). These devices act as a barrier, diverting excess voltage from entering the inverter and the connected solar panels. This prevents damage to the inverter and other sensitive electronic components by ensuring that the voltage stays within safe limits.
Q: What is the role of transformerless design in a solar inverter?
The role of transformerless design in a solar inverter is to eliminate the use of a bulky and costly transformer, which helps reduce the overall size, weight, and cost of the inverter. Additionally, a transformerless design allows for higher efficiency and improved performance of the solar inverter.
Q: How do I choose the right solar inverter for my system?
When choosing the right solar inverter for your system, there are a few key factors to consider. First, determine the size and capacity of your solar panels to ensure compatibility. Next, consider the type of inverter you need, whether it's a string inverter, micro inverter, or power optimizer. Additionally, assess the efficiency and reliability of the inverter, as well as its warranty and after-sales support. Finally, consider your budget and any specific features you may require, such as monitoring capabilities or grid connectivity options. It's important to research and compare different models to find the one that best fits your specific solar system needs.
Q: What is a solar inverter?
A solar inverter is a device that converts the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power household appliances and be fed back into the grid.
Q: What are the key differences between a central inverter and a string inverter?
The key differences between a central inverter and a string inverter lie in their design and functionality. A central inverter is a single large inverter that is typically installed at a central location in the solar power system. It receives the DC power generated by multiple solar panels connected in series, and then converts it into AC power for use in the electrical grid. Central inverters are more suitable for large-scale solar installations as they can handle higher power outputs. On the other hand, a string inverter is a smaller inverter that is installed close to the solar panels. It works by converting the DC power generated by a string of panels, typically 8 to 12, into AC power. String inverters are commonly used in residential or smaller commercial solar installations. One notable difference is the location of the inverters. Central inverters are typically installed in a dedicated room or enclosure, away from the solar panels, whereas string inverters are generally mounted either on the wall or directly on solar panel mounting racks. Another difference is the impact of shading or panel malfunction. In a central inverter system, if one panel is shaded or malfunctions, it affects the output of the entire string of panels. In contrast, with a string inverter system, the impact is limited to only the affected string, allowing other strings to continue generating power efficiently. Additionally, string inverters offer better monitoring capabilities as they can provide real-time data for each individual string of panels, allowing for easier troubleshooting and maintenance. Central inverters, on the other hand, provide a single output value for the entire solar array. Overall, the choice between a central inverter and a string inverter depends on the scale of the solar installation, the available space, and the specific requirements of the project.
Q: What is the maximum output voltage of a solar inverter?
The maximum output voltage of a solar inverter is typically determined by the specific model and specifications of the inverter being used. It can vary depending on factors such as the size and configuration of the solar array it is connected to. Generally, for residential solar installations, the maximum output voltage of a solar inverter can range from 230V to 240V for single-phase systems, and up to 400V for three-phase systems.
Q: What is the role of a solar inverter in a grid-independent system?
The role of a solar inverter in a grid-independent system is to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power household appliances and other electrical loads. It also manages the flow of electricity between the solar panels, batteries (if present), and the electrical loads, ensuring optimal energy utilization and system efficiency. Additionally, a solar inverter in a grid-independent system may incorporate advanced features like battery charging and discharging control, voltage regulation, and monitoring capabilities to ensure the stability and reliability of the system.
Q: Are there any voltage or frequency regulations for solar inverters?
Yes, there are voltage and frequency regulations for solar inverters. These regulations vary by country and are typically established by regulatory bodies or standards organizations. They ensure that the output voltage and frequency of solar inverters meet the required standards to ensure grid compatibility and prevent any potential damage to the electrical infrastructure.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords