• Grid Tied Solar Inverter 3-phase 10000W System 1
  • Grid Tied Solar Inverter 3-phase 10000W System 2
  • Grid Tied Solar Inverter 3-phase 10000W System 3
Grid Tied Solar Inverter 3-phase 10000W

Grid Tied Solar Inverter 3-phase 10000W

Ref Price:
get latest price
Loading Port:
Shenzhen
Payment Terms:
TT or LC
Min Order Qty:
1 unit pc
Supply Capability:
5000Units/Per month pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Grid Tied Solar Inverter 3-phase 10000W

CNBM International Corporation (CNBM International) is the most important trading platform of CNBM Group Corporation, a state-owned company under the direct supervision of State-owned Assets Supervision and Administration Commission of the State Council.

With a R&D team more than 100 engineers,40% of the staff, who has been deeply engaged in the photovoltaic industry for 10 years, CNBM takes the mission to increase the inverter availability and efficiency, putting continuous innovation to make CNBM inverter easier for installation and operation, and more cost-effective for solar plant construction. The full range of CNBM single phase inverters has received VDE, CE, G83/1, G59/2, ENEL2010, VDE4105, C10/C11, AS4777 etc.

Maximum efficiency of 97.8% and wide input voltage range, Internal DCswitch,MTL-String, Sound control,Bluetooth/RF technology /WiFiTransformerless,GT topology

The Grid Connected Solar Inverter we can offer is 1.5kw to 20kw.

 

Introduction of Grid Tied Solar Inverter 3-phase 10000W

Maximum efficiency of 97.8% and wide input voltage range
Integrated DC switch-disconnected
MTL-String
Sound control
Bluetooth/RF technology /Wi-Fi
Transformerless GT topology
5 years warranty (10 years as optional)

 

Datasheet of Grid Tied Solar Inverter 3-phase 10000W

Model

10000TL3-US

12000TL3-US

18000TL3-US

20000TL3-US

Input data(DC)

Max. DC Power

10500W

12500W

18750W

20850W

Max. DC voltage

600V

600V

600V

600V

Start voltage

120V

120V

120V

120V

PV voltage range

80V-600V

80V-600V

80V-600V

80V-600V

Max. input current of the MPP tracker A/tracker B

21A/21A

25A/25A

38A/38A

42A/42A

Number of MPP trackers/strings per MPP tracker

2/3

2/3

2/6

2/6

Output data(AC)

Nominal output power

10000W

12000W

18000W

20000W

Nominal AC voltage

480V

480V

480V

480V

AC voltage range

422-528VAC

422-528VAC

422-528VAC

422-528VAC

Nominal AC grid frequency

60 Hz

60 Hz

60 Hz

60 Hz

Max. output currentcos φ=1)

12.0A

14.5A

21.5A

24A

Power factor(cos φ)

>0.99        
(0.9 Leading to 0.9 Lagging)

>0.99        
(0.9 Leading to 0.9 Lagging)

>0.99        
(0.9 Leading to 0.9 Lagging)

>0.99        
(0.9 Leading to 0.9 Lagging)

Harmonics

<3%

<3%

<3%

<3%

Grid connection type

3/N/E

3/N/E

3/N/E

3/N/E

Efficiency

Max. efficiency

97%

97%

97.5%

97.5%

CEC-Weighted efficiency

95.5%

95.5%

96%

96.5%

MPPT efficiency

99.5%

99.5%

99.5%

99.5%

Protection devices

Input over voltage protection -DIN rail surge arrester(Option)

Class II

Class II

Class II

Class II

DC insulation measure

yes

yes

yes

yes

AC short circuit protection

yes

yes

yes

yes

Output over voltage protection -Varistor

yes

yes

yes

yes

Output over voltage protection -DIN rail surge arrester(Option)

Class II

Class II

Class II

Class II

String fuse type/size(Option)

15A/600VDC 10*38mm

15A/600VDC 10*38mm

15A/600VDC 10*38mm

15A/600VDC 10*38mm

General Data

Dimensions(W*H*D) in mm

530*705*247

530*705*247

650*740*247

650*740*247

Weight

46kg/101.5lb

46kg/101.5lb

63kg/138.9lb

63kg/138.9lb

Operating ambient temperature range

–25°C ... +60°C

–25°C ... +60°C

–25°C ... +60°C

–25°C ... +60°C

Altitude

≤2000m/6560ft

Self Consumption night

< 3 W

< 3 W

< 3 W

< 3 W

Topology

Transformerless

Cooling concept

Fan Cool

Fan Cool

Fan Cool

 Fan Cool

Electronics protection rating /connection area

NEMA 3R

NEMA 3R

NEMA 3R

NEMA 3R

Features

Display

Graphic

Graphic

Graphic

Graphic

Interface:RS232/RS485/ Bluetooth/RF/Zigbee/Wifi

yes/yes/opt/opt /opt/opt

Warranty:10 years /15 years

yes/opt

yes/opt

yes/opt

yes/opt

Certificates and approvals

UL1741,UL1998,IEEE1547,FCC part 15(class B),CSA C22.2 No.107.1

 

Picure1: Factory of Grid Tied Solar Inverter 3-phase 10000W

Grid Tied Solar Inverter 3-phase 10000W

 

Picture 2: Package of Grid Tied Solar Inverter 3-phase 10000W

Grid Tied Solar Inverter 3-phase 10000W

 

Q:How is a solar inverter different from a regular inverter?
A solar inverter is specifically designed to convert the DC (direct current) electricity generated by solar panels into AC (alternating current) electricity suitable for use in homes and businesses. On the other hand, a regular inverter is mainly used to convert DC electricity from batteries or other sources into AC electricity. Therefore, while both inverters convert electricity from one form to another, a solar inverter is tailored for the unique requirements of solar power systems.
Q:What is the maximum number of solar panels that a solar inverter can support?
The maximum number of solar panels that a solar inverter can support depends on the specific model and capacity of the inverter. Different inverters have different power ratings and input capacities, which determine the number of solar panels they can handle. It is important to consult the manufacturer's specifications or consult with a professional to determine the appropriate number of panels that can be supported by a particular solar inverter.
Q:Can a solar inverter be used in countries with different electrical standards?
Yes, a solar inverter can be used in countries with different electrical standards by ensuring it is compatible with the specific electrical standards of the country. This may involve adjusting the voltage, frequency, and plug type to match the local requirements, or using voltage converters or adapters if necessary. It is important to consult with a professional or check the manufacturer's specifications to ensure proper compatibility and safe operation.
Q:What are the potential risks of fire or explosions from a faulty solar inverter?
The potential risks of fire or explosions from a faulty solar inverter include short circuits, electrical arcing, overheating, and component failure. These issues can lead to an accumulation of heat, sparks, or electrical discharges, which may ignite flammable materials nearby or cause an explosion. It is crucial to regularly inspect and maintain solar inverters to mitigate these risks and ensure the safe operation of the system.
Q:Are there any limitations on the number of solar panels that can be connected to a single inverter?
Yes, there are limitations on the number of solar panels that can be connected to a single inverter. The maximum number of panels that can be connected depends on various factors such as the power rating of the inverter, the voltage and current ratings of the panels, and the configuration of the system. In general, the inverter should be able to handle the combined power output of all the connected solar panels. If the panels generate more power than the inverter can handle, it may lead to system inefficiencies, reduced performance, or even damage to the inverter. Additionally, the voltage and current ratings of the panels should be within the acceptable range of the inverter. If the panels have a higher voltage or current rating than what the inverter can safely handle, it may result in overloading or malfunctioning of the inverter. Furthermore, the configuration of the solar panels also plays a role in determining the limitations. Panels can be connected in series or parallel, and each configuration has its own requirements and limitations. The inverter needs to be compatible with the specific configuration being used. To ensure proper functioning and optimal performance, it is recommended to consult the manufacturer's guidelines and specifications for both the solar panels and the inverter. These guidelines will provide information on the maximum number of panels that can be connected to a single inverter and any other specific limitations or requirements that need to be considered.
Q:What is the difference between a grid-tied and off-grid solar inverter?
A grid-tied solar inverter is connected to the local utility grid and allows for the transfer of excess energy generated by the solar panels back to the grid. This type of inverter does not have the capability to store energy and requires a constant grid connection to function. On the other hand, an off-grid solar inverter is designed to be used in systems that operate independently from the utility grid. It is typically used in remote areas or locations where grid connection is not available. These inverters have the ability to store excess energy in batteries for later use when there is no solar generation.
Q:Can a solar inverter be used with a solar-powered cooling system?
Yes, a solar inverter can be used with a solar-powered cooling system. The solar inverter converts the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power various electrical devices, including the cooling system. This allows for the efficient use of solar energy to run the cooling system, reducing reliance on grid electricity and promoting sustainability.
Q:Are there any limitations on the angle of the solar panels when using a solar inverter?
Solar panels must adhere to certain limitations in terms of their angle when using a solar inverter. The efficiency and overall performance of solar panels can be influenced by the angle at which they are installed. Ideally, solar panels should be positioned at an angle that allows them to receive the maximum amount of sunlight throughout the day. Typically, solar panels are designed to function optimally when installed at an angle that matches the latitude of the location. This angle enables the panels to capture the most sunlight during peak hours. However, this is not an absolute rule, as variations are feasible depending on specific location and climate conditions. If solar panels are installed at angles that are excessively steep or shallow, it can result in decreased energy production. Steep angles may cause sunlight to be lost during certain times of the day, while shallow angles may not allow for optimal sunlight absorption. Moreover, extreme angles can increase the risk of damage from wind or other weather conditions. It is worth noting that modern solar inverters often incorporate advanced tracking and monitoring technologies, which can adapt to different panel angles and orientations. These features can optimize energy production by adjusting the inverter settings based on the real-time performance of the panels. Ultimately, while there are limitations concerning the angle of solar panels, it is crucial to ensure that they are installed in a manner that maximizes their exposure to sunlight throughout the day, in order to achieve the highest possible energy production.
Q:What is the impact of temperature on the performance of a solar inverter?
Temperature has a significant impact on the performance of a solar inverter. As temperature increases, the efficiency of the inverter tends to decrease. This is primarily due to the fact that high temperatures can lead to increased resistive losses within the inverter's components, resulting in reduced overall efficiency. Additionally, excessive heat can cause the inverter to experience thermal stress, leading to potential malfunctions or even failures. Therefore, it is crucial to consider temperature management and cooling measures to optimize the performance and lifespan of a solar inverter.
Q:Can a solar inverter be used in a solar-powered electric vehicle charging station?
Yes, a solar inverter can be used in a solar-powered electric vehicle charging station. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to charge electric vehicles. This allows the charging station to utilize the solar energy efficiently and power the charging process for electric vehicles.

1. Manufacturer Overview

Location Shenzhen,China
Year Established 2010
Annual Output Value 50 million USD
Main Markets Australia, Euro, America, China.
Company Certifications CE, VDE-AR-N4105, FCC,ETL,CEC,CEI 0-21,G83,G59,SAA,CGC

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Shenzhen, Guangzhou, Hongkong
Export Percentage 60%
No.of Employees in Trade Department 260
Language Spoken: English, Chinese
b)Factory Information  
Factory Size: 500-1000
No. of Production Lines 8
Contract Manufacturing None
Product Price Range 300-40000 USD

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords