• On-Grid Energy Storage PV Inverter PH500 Series 1-phase 2KW System 1
  • On-Grid Energy Storage PV Inverter PH500 Series 1-phase 2KW System 2
  • On-Grid Energy Storage PV Inverter PH500 Series 1-phase 2KW System 3
On-Grid Energy Storage PV Inverter PH500 Series 1-phase 2KW

On-Grid Energy Storage PV Inverter PH500 Series 1-phase 2KW

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
60000 watt
Supply Capability:
16000000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

1. Structure of On-Grid Energy Storage PV Inverter Description

On-Grid Energy Storage PV Inverter is a hybrid inverter which combines solar system, AC utility, and battery power source to supply continuous power• It is suitable for the remote areas where the cost of utility is too high or emergency usage when utility is not stable.

 

2. Main Features of the On-Grid Energy Storage PV Inverter

• 2KW on-grid inverter with energy storage
• Pure sine wave output
• Microprocessor controlled to guarantee stable charging system
• Multiple operations: Grid tie, Off grid, and grid-tie with backup
• Built-in MPPT solar charger
• LCD display panel for comprehensive information
• Multiple communication
• Green substitution for generators
• User-adjustable battery charging current

 

3. On-Grid Energy Storage PV Inverter Images

 

On-Grid Energy Storage PV Inverter PH500 Series 1-phase 2KW

On-Grid Energy Storage PV Inverter PH500 Series 1-phase 2KW

On-Grid Energy Storage PV Inverter PH500 Series 1-phase 2KW

 

 

4. On-Grid Energy Storage PV Inverter Specification

 

Model

PH500 Single-phase 2KW

RATED POWER

2000 W

GRID-TIE OPERATION

PV INPUT (DC)

Maximum DC Power

2250W

Nominal DC Voltage / Maximum DC Voltage

300 VDC / 350 VDC

Start-up Voltage / Initial Feeding Voltage

80 VDC / 120 VDC

MPP Voltage Range

150 VDC ~ 320 VDC

Number of MPP Trackers / Maximum Input Current

1 / 1 x 15 A

GRID OUTPUT (AC)

Nominal Output Voltage

101/110/120/127 VAC

Output Voltage Range

88 - 127 VAC*

Nominal Output Current

18 A

Power Factor

> 0.99

EFFICIENCY

Maximum Conversion Efficiency (DC/AC)

0.95

European Efficiency@ Vnominal

0.94

OFF-GRID OPERATION

 

AC INPUT

AC Start-up Voltage/Auto Restart Voltage

60 - 70 VAC / 85 VAC

Acceptable Input Voltage Range

85 - 130 VAC*

Number of MPP Trackers / Maximum Input Current

30 A

PV INPUT (DC)

Maximum DC Voltage

350 VDC

MPP Voltage Range

150 VDC ~ 320 VDC

Maximum Input Current

1 / 1 x 15 A

BATTERY MODE OUTPUT (AC)

Nominal Output Voltage

101/110/120/127 VAC

Output Waveform

Pure Sinewave

Efficiency (DC to AC)

0.9

HYBRID OPERATION

PV INPUT (DC)

Nominal DC Voltage / Maximum DC Voltage

300 VDC / 350 VDC

Start-up Voltage / Initial Feeding Voltage

80 VDC / 120 VDC

MPP Voltage Range

150 VDC ~ 320 VDC

Maximum Input Current

1 / 1 x 15 A

GRID OUTPUT (AC)

Nominal Output Voltage

101/110/120/127 VAC

Output Voltage Range

88-127 VAC

Nominal Output Current

18 A

AC INPUT

AC Start-up Voltage/Auto Restart Voltage

60 - 70 VAC / 85 VAC

Acceptable Input Voltage Range

80 - 130 VAC*

Maximum AC Input Current

30 A

BATTERY MODE OUTPUT (AC)

Nominal Output Voltage

101/110/120/127 VAC

Efficiency (DC to AC)

0.9

BATTERY & CHARGER

Nominal DC Voltage

48 VDC

Maximum Charging Current

25A

GENERAL

PHYSICAL

Dimension, D x W x H (mm)

420 x 415 x 170

Net Weight (kgs)

15.5

INTERFACE

Communication Port

RS-232/USB

Intelligent Slot

Optional SNMP, Modbus, and AS-400 cards available

ENVIRONMENT

Humidity

0 ~ 90% RH (No condensing)

Operating Temperature

0 to 40°C

Altitude

0 ~ 1000 m**

 

5. FAQ of On-Grid Energy Storage PV Inverter

 

Q1. What is the difference between inverter and On-Grid Energy Storage PV Inverter?
A1. Inverter only has AC inpput, but On-Grid Energy Storage PV Inverter both connect to AC input and solar panel, it saves more power.

 

Q2. What is the difference between MPPT&PWM?
A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

 

Q3. What is the waranty of product?
A3. 12 months.

 
Q:What is the role of a power management system in a solar inverter?
The role of a power management system in a solar inverter is to efficiently convert and manage the electricity generated from solar panels. It regulates the flow of power, optimizes energy production, and ensures the safe and reliable operation of the solar inverter system. Additionally, it provides protection against overvoltage, overcurrent, and other electrical faults, maximizing the overall performance and longevity of the system.
Q:Photovoltaic grid-connected inverter problem
But Baidu Encyclopedia clearly pointed out: the zero line is the secondary side of the transformer leads the neutral point of the line, and the phase line constitutes a circuit for power supply equipment.
Q:What is the importance of insulation resistance measurement in a solar inverter?
Insulation resistance measurement in a solar inverter is crucial as it helps ensure the safety and efficiency of the electrical system. By measuring the insulation resistance, any potential faults or deteriorations in the insulation can be detected, preventing electrical leakage or short circuits. This measurement also helps identify any insulation breakdowns that may compromise the performance and reliability of the solar inverter. Ultimately, insulation resistance measurement is essential for maintaining the integrity of the solar inverter and ensuring the safety of both the electrical system and the people using it.
Q:Are there any disadvantages of using a solar inverter?
Yes, there are a few disadvantages of using a solar inverter. Firstly, solar inverters are sensitive to extreme temperature variations, and their efficiency can be affected in very high or low temperature conditions. Secondly, solar inverters require regular maintenance and occasional replacement, which adds to the overall cost of the system. Additionally, solar inverters produce a small amount of electromagnetic interference (EMI) which can interfere with nearby electronic devices if not properly shielded. Lastly, solar inverters are grid-tied systems, meaning they rely on a stable electrical grid to function. In case of power outages or grid malfunctions, solar inverters may shut down and stop supplying power to the connected devices.
Q:How does the input voltage rating affect the performance of a solar inverter?
The input voltage rating of a solar inverter directly affects its performance as it determines the maximum voltage that the inverter can handle from the solar panels. If the input voltage exceeds the rating, it can lead to overloading or damage to the inverter. On the other hand, if the input voltage falls below the rating, it can result in reduced efficiency and power output. Therefore, selecting an inverter with an appropriate input voltage rating is crucial to ensure optimal performance and longevity of the solar system.
Q:What are the safety measures to consider when installing a solar inverter?
When installing a solar inverter, there are several important safety measures to consider. Firstly, it is crucial to turn off the main electrical supply before beginning any installation work. This will prevent the risk of electric shock or injury. Additionally, it is important to wear appropriate personal protective equipment (PPE) such as gloves, safety glasses, and non-slip footwear to ensure personal safety during the installation process. Another safety measure is to ensure proper grounding of the solar inverter system to prevent electrical faults and potential fire hazards. Furthermore, it is essential to follow the manufacturer's instructions and guidelines for installation to ensure proper wiring and avoid any potential electrical hazards. Regular maintenance and inspections should also be conducted to identify and address any potential safety issues or malfunctions. Overall, prioritizing safety measures during the installation of a solar inverter is crucial to minimize risks and ensure the safe and efficient operation of the system.
Q:Can a solar inverter be used with a solar-powered EV charging network?
Yes, a solar inverter can be used with a solar-powered EV charging network. A solar inverter converts the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity, which is used to power electric vehicles (EVs) through the charging network. This allows for the efficient and sustainable use of solar energy to charge EVs.
Q:What is the role of a display interface in a solar inverter?
The role of a display interface in a solar inverter is to provide real-time information and control options to the user. It allows the user to monitor and understand the performance of the solar inverter, such as the amount of energy being generated, the status of the system, and any potential issues. The display interface also enables the user to adjust and optimize the settings of the inverter, such as voltage and frequency, to ensure efficient operation. Overall, the display interface enhances the user experience by providing visibility and control over the solar inverter's functions.
Q:Can a solar inverter be used with a solar-powered cooling system?
Yes, a solar inverter can be used with a solar-powered cooling system. A solar inverter is responsible for converting the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power various appliances, including cooling systems. By integrating a solar inverter into a solar-powered cooling system, the system can effectively harness solar energy to operate and provide cooling without relying on external power sources.
Q:What is the maximum current output of a solar inverter?
The maximum current output of a solar inverter depends on its size and specifications. In general, smaller residential inverters may have a maximum output current of around 8-12 amps, while larger commercial or utility-scale inverters can go up to several hundred amps. It is important to select an inverter that matches the specific requirements of the solar PV system to ensure optimal performance and safety.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords