• Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA System 1
  • Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA System 2
  • Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA System 3
  • Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA System 4
  • Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA System 5
Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA

Schuco Solar Inverter 1500w Solar Grid Tie Inverter Transformerless 1.5kw String Inverter ETL/FCA

Ref Price:
$370.00 - 556.00 / pc get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1500w solar grid tie inverter transformerless 1.5kw string inverter ETL/FCA

Solar inverter 1500TL-3000TL-US

Maximum efficiency of 97.5% and wide input voltage range

Internal DC Switch

Transformerless GT topology

Compact design

Bluetooth/ RF technology/ Zigbee/ Wi-Fi

Sound control

Easy installation


 

General Descriptions

 Leading-Edge Technology, CE,TUV ,VDE , SAA,DK5940 Certicificates.

> Maximum efficiency of 97.8 % and wide input voltage range

> Internal DC STWTICH

> Transformerless H6 topology

> Compact Design

> MPPT control

> MTL-String

> RS485 RS432 bluetooth Technology

> Comprehensive Growatt warranty program

> Easy country configuration, easy installation

> Multi-language display

 

Communications
> RS485 /GPRS interfaces
> Computer monitoring software


1500w solar grid tie inverter transformerless 1.5kw string inverter ETL/FCA


1500-US

2000-US

3000-US

Inputdata   

Max.DCpower

1800W

2300W

3200W

Max. DC  voltage

450V

500V

500V

Start  Voltage

150V

150V

150V

PV voltage  range

100V-450V

100V-500V

100V-500V

MPP voltage  range(full load)

120V-400V

120V-450V

120V-450V

Max. input  current of per MPP tracker

12A

14A

17A

Number of  independent MPP
 trackers/strings per MPP tracker

1/1

1/2

1/2

 

Rated AC  output power

1500W@208Vac
 1650W@240&277V

1800W@208Vac
 2000W@240&277Vac

2500W@208Vac
 2800W@240&277Vac

        AC nominal voltage; range

Default:240V  single phase, optional:208 single  phase;183-228@208V,211-264V@240V                

Max. output  current

8A/7.8A

9.7A/9.4A

15A/14.2A

AC grid  frequency; range

60Hz;  59.3-60.5Hz

60Hz;  59.3-60.5Hz

60Hz;  59.3-60.5Hz

Power  factor

1

1

1

THDI

<3%

<3%

<3%

Grid  connection type

Single  phase

Single  phase

Single  phase

 

Efficiency   

Max.efficiency
 Euro-eta
 MPPT efficiency

97%
96%
99.5%

97%
96.5%
99.5%

97%
96.5%
99.5%

 

Protection Devices   

DC reverse  polarity protection

yes

yes

yes

DC switch  rating for each MPPT

yes

yes

yes

Output over  current protection

yes

yes

yes

Output over  voltage
 protection-varistor

yes

yes

yes

Ground  fault monitoring

yes

yes

yes

Grid  monitoring

yes

yes

yes

Integrated  all-pole sensitive
 leakage current monitoring unit

yes

yes

yes

 

Generaldata   

Dimensions(W/H/D)  in mm
 Weight
 Operating temperature range
 Noise emission(typical)
 Self-Consumption (night)
 Topology
 Cooling concept
 Environmental Protection rating
 Altitude
 Humidity

360/465/165
 14.6KG
 -25℃ ... +60℃
 ≤25dB(A)
 <0.5W
 Transformerless
 Natural
 Type 3R
 2000m without derating
 0~100%

360/465/165

15.1KG
 -25℃ ... +60℃
 ≤25dB(A)
 <0.5W
 Transformerless
 Natural
 Type 3R
 2000m without derating
 0~100%

360/465/165
 15.9KG
 -25℃ ... +60℃
 ≤25dB(A)
 <0.5W
 Transformerless
 Natural
 Type 3R
 2000m without derating
 0~100%

 

Features   

DC  connection

AC  connection

Display
 Interfaces: RS232/RS485/
 Ethernet/RF/WiFi
 Warranty: 10years/15years

Screw  terminal

Screw  terminal

LCD
yes/yes/

opt/opt/opt
yes/opt

Screw  terminal

Screw  terminal

LCD

yes/yes/

opt/opt/opt
yes/opt

Screw  terminal

Screw  terminal

LCD

yes/yes/

opt/opt/opt

yes/opt

 

Certificates and Approvals   UL1741, UL1998,  IEEE 1547, CSA C22.2    No.107.1-1, FCC Part15(Class A&B)

 


FAQ

1. Have any design tool and how to use it?

Shine Design is the system design software just for inverters, It can conduct installers to figure out panel numbers for a system, panel numbers for each string, and which inverter model is suitable for the system. Moreover, it can print a design report after input all necessary parameters, can calculate DC/AC wire wastage, annual generation, etc.

2. Does the inverter have monitoring solutions for residential system?

For small rating system, we have wired two monitoring solution (ShineNet via RS232 or RS485). (a) Local wireless monitoring solution (ShineVision via RF module communication) (b) Global wireless monitoring solution (WIFI module via WIFI network)

3. Do you have free solution for monitoring?

ShineNet is an inverter monitoring software run in Windows XP, Windows Vista, Windows 7 operating system. It can monitor inverter via RS232 (or RS232 convert to USB cable) and RS485 wire connection. Customers can purchase the cable locally to get the inverter monitored, it is simple.

Q: Can a solar inverter be used in conjunction with a backup generator?
Yes, a solar inverter can be used in conjunction with a backup generator. In fact, this combination is often used in hybrid solar systems to provide continuous power supply even during times of low solar generation or power outages. The solar inverter manages the power flow from both the solar panels and the generator, ensuring a seamless transition between power sources and maximizing the utilization of renewable energy.
Q: Can a solar inverter be used with battery storage?
Yes, a solar inverter can be used with battery storage. In fact, integrating a solar inverter with battery storage systems allows for storing excess solar energy generated during the day and using it at night or during times of high energy demand. This combination enables greater energy independence and the ability to use renewable energy even when the sun is not shining.
Q: Can a solar inverter be used with building-integrated photovoltaic systems?
Yes, a solar inverter can be used with building-integrated photovoltaic (BIPV) systems. Solar inverters are an essential component of any photovoltaic system, including BIPV systems. They are responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power electrical devices in buildings. Therefore, a solar inverter is necessary to ensure the seamless integration of BIPV systems with the electrical grid and the effective utilization of solar energy.
Q: What is the role of a solar inverter in a net metering system?
The role of a solar inverter in a net metering system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which is compatible with the electrical grid. The inverter also synchronizes the solar system with the grid, ensuring that excess electricity generated by the solar panels is fed back into the grid, allowing for net metering and the possibility of earning credits for the surplus energy generated.
Q: Can a solar inverter be used with different types of grid connection standards?
Yes, a solar inverter can be used with different types of grid connection standards as long as it is designed to meet the specific requirements of those standards. The inverter must be compatible with the voltage, frequency, and other technical specifications of the grid in order to ensure safe and efficient operation of the solar power system.
Q: What is the role of a solar inverter in voltage and frequency regulation during grid disturbances?
The role of a solar inverter in voltage and frequency regulation during grid disturbances is to ensure stable and reliable power supply from solar panels to the grid. It monitors the voltage and frequency of the grid and adjusts the output of the solar panels accordingly to maintain a consistent and synchronized power flow. This helps to prevent power fluctuations and protect the grid from disturbances, ensuring efficient and safe operation of the electrical system.
Q: What are the typical efficiency ranges for different types of solar inverters?
The typical efficiency ranges for different types of solar inverters can vary depending on factors such as the technology used, the quality of the inverter, and the specific application. However, in general, string inverters typically have efficiency ranges of around 95% to 98%, while microinverters can achieve efficiencies ranging from 95% to 99%. On the other hand, central inverters, which are commonly used in large-scale solar installations, often have efficiency ranges of 97% to 99%. It's important to note that these are average ranges, and actual efficiency can vary depending on various factors and specific product specifications.
Q: Can a solar inverter work in low light conditions?
No, a solar inverter cannot work in low light conditions as it relies on sunlight to generate electricity. Low light conditions result in reduced solar energy, which makes it difficult for the inverter to convert it into usable electricity efficiently.
Q: How does the maximum AC current rating affect the performance of a solar inverter?
The maximum AC current rating of a solar inverter determines its capacity to handle and convert the DC power generated by solar panels into usable AC power for the electrical grid. A higher maximum AC current rating allows the inverter to handle larger amounts of power, enabling it to support more solar panels or higher power output. This ensures efficient and uninterrupted performance of the solar inverter, allowing it to meet the energy demands of the system and maximize solar energy production.
Q: Are there any safety risks associated with solar inverters?
Yes, there can be safety risks associated with solar inverters. While solar inverters are generally considered safe, there are a few potential hazards to be aware of. These include electrical shock, fire hazards, and the release of toxic gases. It is important to ensure proper installation, regular maintenance, and adherence to safety guidelines to mitigate these risks.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords