• Solar Power Inverter 1000W-3000W Grid Tie Solar Inverter System 1
  • Solar Power Inverter 1000W-3000W Grid Tie Solar Inverter System 2
  • Solar Power Inverter 1000W-3000W Grid Tie Solar Inverter System 3
  • Solar Power Inverter 1000W-3000W Grid Tie Solar Inverter System 4
  • Solar Power Inverter 1000W-3000W Grid Tie Solar Inverter System 5
Solar Power Inverter 1000W-3000W Grid Tie Solar Inverter

Solar Power Inverter 1000W-3000W Grid Tie Solar Inverter

Ref Price:
$280.00 - 460.00 / pc get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Solar power inverter 1000W-3000W grid tie solar inverter

Specifications

Maximum efficiency 97.8%, wide input voltage range
Internal DC switch
Transformerless GT topology
Compact design 



1500 2000 3000 4400 5000TL

General Descriptions

Leading-Edge Technology, CE,TUV ,VDE , SAA,DK5940 Certicificates.

> Maximum efficiency of 97.8 % and wide input voltage range

> Internal DC STWTICH

> Transformerless H6 topology

> Compact Design

> MPPT control

> MTL-String

> RS485 RS432 bluetooth Technology

> Comprehensive Growatt warranty program

> Easy country configuration, easy installation

> Multi-language display


Communications
> RS485 /GPRS interfaces
> Computer monitoring software


Safety
> Full protection functions:DC reverse polarity, AC short-circuit protection, ground fault monitoring, grid monitoring, integrate all-pole sensitive, leakage current monitoring unit.

> Standards complied: EN61000-6-1, EN61000-6-2, EN61000-6-3, EN61000-6-4,EN61000-3-2, EN50178, VDE0126-1-1,IEC-62109


FAQ

 

1. Have any design tool and how to use it?

Shine Design is the system design software just for inverters, It can conduct installers to figure out panel numbers for a system, panel numbers for each string, and which inverter model is suitable for the system. Moreover, it can print a design report after input all necessary parameters, can calculate DC/AC wire wastage, annual generation, etc.

 

2. Does the inverter have monitoring solutions for residential system?

For small rating system, we have wired two monitoring solution (ShineNet via RS232 or RS485). (a) Local wireless monitoring solution (ShineVision via RF module communication) (b) Global wireless monitoring solution (WIFI module via WIFI network)

 

3. Do you have free solution for monitoring?

ShineNet is an inverter monitoring software run in Windows XP, Windows Vista, Windows 7 operating system. It can monitor inverter via RS232 (or RS232 convert to USB cable) and RS485 wire connection. Customers can purchase the cable locally to get the inverter monitored, it is simple.


Solar Power Inverter 1000W-3000W Grid Tie Solar Inverter

 

Solar Power Inverter 1000W-3000W Grid Tie Solar Inverter

 

Solar Power Inverter 1000W-3000W Grid Tie Solar Inverter


Technical Specifications

Model

Specifications

1500

2000

3000

4000

4400

5000

Input data(DC)


Max. DC power

1800W

2300W

3200W

4200W

4600W

5000W/5200W*

Max. DC voltage

450V

500V

500V

580V

580V

580V

Start voltage

150V

150V

150V

150V

150V

150V

PV voltage range

100V-450V

100V-500V

100V-500V

100V-580V

100V-580V

100V-580V

MPP work voltage range/ nominal voltage

120V-450V/360V

120V-500V/360V

120V-500V/360V

120V-580V/360V

120V-580V/360V

120V-580V/360V

Full load dc voltage range

175V-450V

195V-450V

250V-450V

250V-500V

250V-500V

250V-500V

Max. input current

10A

12A

15A

20A

20A

20A

Max. input current per string

10A

12A

15A

20A

20A

20A

Number of independent MPP trackers /strings per MPP tracker

1/1

1/2

1/2

1/3

1/3

1/3

Output (AC)


Rated AC output power

1600W

2000W

2850W

3680W

4200W

4600W

Max. AC power

1650W

2200W

3000W

4000W

4400W

4600/5000W*

Max. output current

8A

11A

15A

16A

21A

22.7A

AC nominal voltage; range

220,230,240V; 180Vac-280Vac

220,230,240V; 180Vac-280Vac

220,230,240V; 180Vac-280Vac

220,230,240V;   180Vac-280Vac

220,230,240V;   180Vac-280Vac

220,230,240V; 180Vac-280Vac

AC grid frequency; range

50,60H;±5 Hz

50,60H;±5 Hz

50,60H;±5 Hz

50,60H;±5 Hz

50,60H;±5 Hz

50,60H;±5 Hz

Power factor

1

1

1

1

1

1

THDI

<3%< p="">

<3%< p="">

<3%< p="">

<3%< p="">

<3%< p="">

<3%< p="">

AC connection

Single phase

Single phase

Single phase

Single phase

Single phase

Single phase

Efficiency


Max. efficiency

97%

97%

97%

97.8%

97.8%

97.8%

Euro weighted efficiency

96.5%

96.5%

96.5%

97.4%

97.4%

97.4%

MPPT efficiency

99.5%

99.5%

99.5%

99.5%

99.5%

99.5%

Protection devices


DC reverse polarity protection

yes

yes

yes

yes

yes

yes

DC switch rating for each MPPT

yes

yes

yes

yes

yes

yes

Output over current protection

yes

yes

yes

yes

yes

yes

Output over voltage protection-varistor

yes

yes

yes

yes

yes

yes

Ground fault monitoring

yes

yes

yes

yes

yes

yes

Grid monitoring

yes

yes

yes

yes

yes

yes

Integrated all - pole sensitive leakage current monitoring unit

yes

yes

yes

yes

yes

yes

General Data


Dimensions (W / H / D) in mm

360/329/132

360/329/132

360/329/132

406/406/192

406/406/192

406/406/192

Weight

11.5KG

11.7KG

12.2KG

21KG

21KG

21KG

Operating temperature range

–25°C ... +60°C (-13...+140°F) with derating above 50°C /122°F

–25°C ... +60°C (-13...+140°F) with derating above 50°C /122°F

–25°C ... +60°C (-13...+140°F) with derating above 50°C /122°F

–25°C ... +60°C (-13...+140°F) with derating above 50°C /122°F

–25°C ... +60°C (-13...+140°F) with derating above 50°C /122°F

–25°C ... +60°C (-13...+140°F) with derating above 50°C /122°F

Noise emission (typical)

≤ 25 dB(A)

≤ 25 dB(A)

≤ 25 dB(A)

≤ 25 dB(A)

≤ 25 dB(A)

≤ 25 dB(A)

Altitude

2000m(6560ft) without derating

Self-Consumption night

< 0.5 W

< 0.5 W

< 0.5 W

< 0.5 W

< 0.5 W

< 0.5 W

Topology

transformerless

transformerless

transformerless

transformerless

transformerless

transformerless

Cooling concept

Natural

Natural

Natural

Natural

Natural

Natural

Environmental Protection Rating

IP65

IP65

IP65

IP65

IP65

IP65

Relative humidity

95%

95%

95%

95%

95%

95%

Features


DC connection

H4/MC4(opt)

H4/MC4(opt)

H4/MC4(opt)

H4/MC4(opt)

H4/MC4(opt)

H4/MC4(opt)

AC connection

Screw terminal

Screw terminal

Screw terminal

Screw terminal

Screw terminal

Screw terminal

Display

LCD

LCD

LCD

LCD

LCD

LCD

Interfaces: RS485/RS232/Bluetooth / RF/Zigbee/Wifi

yes/yes/opt/opt/opt/opt

yes/yes/opt/opt/opt/opt

yes/yes/opt/opt/opt/opt

yes/yes/opt/opt/opt/opt

yes/yes/opt/opt/opt/opt

yes/yes/opt/opt/opt/opt

Warranty: 5 years / 10 years

yes /opt

yes /opt

yes /opt

yes /opt

yes /opt

yes /opt

Certificates and approvals

CE,VDE 0126-1-1,DK5940,G83/1-1,G59/2,RD1663,EN50438,VDE-AR-N4105,CEI-021,IEC-62109,ENEL-Guide

CE,G83/1-1

CE,VDE 0126-1-1,DK5940,G83/1-1,G59/2,RD1663,EN50438,IEC-62109,ENEL-Guide


Q:What is the role of a voltage regulator in a solar inverter?
The role of a voltage regulator in a solar inverter is to maintain a consistent and stable output voltage despite fluctuations in the input voltage from the solar panels. It ensures that the electricity generated by the solar panels is converted and delivered to the connected devices or grid at the required voltage level, preventing any damage to the devices and optimizing the overall efficiency of the solar power system.
Q:How does a solar inverter impact the overall system reliability?
A solar inverter plays a crucial role in ensuring the overall system reliability of a solar power system. It converts the direct current (DC) generated by solar panels into alternating current (AC) that is suitable for use in homes or businesses. By efficiently converting the energy and maintaining optimal voltage and frequency levels, the inverter ensures that the system operates reliably and consistently. It also provides various protective functions, such as monitoring and controlling the system's performance, detecting faults or abnormalities, and shutting down the system in case of emergencies. Therefore, a well-functioning solar inverter significantly impacts the overall system reliability by maximizing energy production, preventing damage, and ensuring smooth operation.
Q:What is the role of a communication interface in a solar inverter?
The role of a communication interface in a solar inverter is to facilitate the exchange of information and data between the inverter and other devices or systems. It allows for monitoring, control, and communication with the solar inverter, enabling real-time performance monitoring, remote management, and integration with other renewable energy systems or smart grid networks.
Q:How does the power factor affect the performance of a solar inverter?
The power factor affects the performance of a solar inverter by influencing its efficiency and capacity to convert DC power from solar panels into AC power. A low power factor can result in increased losses and reduced efficiency, leading to lower overall performance. On the other hand, a high power factor ensures efficient power conversion, minimizing losses, and optimizing the inverter's performance.
Q:How does a solar inverter communicate with other system components?
A solar inverter communicates with other system components through various methods such as wired connections or wireless technologies like Wi-Fi or Bluetooth. It exchanges information with components like solar panels, batteries, and control systems to monitor and regulate the flow of electricity, optimize energy production, and ensure safe and efficient operation of the solar power system.
Q:How does a solar inverter monitor and optimize energy production?
A solar inverter monitors and optimizes energy production by tracking the amount of solar energy being generated by the solar panels. It continuously adjusts the voltage and current to ensure the maximum power is being extracted from the panels. Additionally, it monitors the grid conditions and adjusts the output accordingly to ensure compatibility and stability. Through advanced algorithms and real-time data analysis, a solar inverter maximizes energy production by continuously adapting to the changing environmental and grid conditions.
Q:Can a solar inverter be used with energy storage systems?
Yes, a solar inverter can be used with energy storage systems. In fact, solar inverters are often used in conjunction with energy storage systems to convert the direct current (DC) energy generated by solar panels into alternating current (AC) energy for use in homes or businesses, while also charging and discharging energy from the storage system as needed. This allows for greater flexibility and efficiency in managing and utilizing solar energy.
Q:How does a solar inverter interact with the electrical grid?
A solar inverter interacts with the electrical grid by converting the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity, which is the standard form of electricity used in the grid. It synchronizes the AC electricity produced by the solar panels with the grid's frequency and voltage, allowing the excess energy to be fed back into the grid. The solar inverter also ensures that the energy produced by the solar panels is safely integrated with the grid, adhering to the grid's regulations and requirements.
Q:Can a solar inverter be used with a solar-powered agriculture system?
Yes, a solar inverter can be used with a solar-powered agriculture system. A solar inverter is essential for converting the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity required to power electrical devices and equipment used in the agriculture system. This allows for the efficient utilization of solar energy for various agricultural applications such as irrigation systems, pumps, lighting, and other electrical equipment.
Q:How does a solar inverter handle voltage dips or surges in the grid?
A solar inverter handles voltage dips or surges in the grid by constantly monitoring the grid voltage. In case of a dip or surge, it quickly adjusts its own output voltage to match the grid voltage, thereby stabilizing the grid. This is achieved through various control mechanisms, such as voltage feedback loops and power electronics, which ensure that the solar inverter remains synchronized with the grid and provides a consistent and reliable power supply.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Related keywords