• Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 1
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 2
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 3
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 4
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 5
Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter

Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter

Ref Price:
$30,000.00 - 40,000.00 / unit get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Photovoltaic Grid-Connected Inverter SG630MX-E Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

 autility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

It is acritical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment.

Solar inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Suitable for 50Hz/60Hz grid, could be used in Asia, Australia and Europe.

  

2. Main Features of the Photovoltaic Grid-Connected Inverter SG630MX-E

• LVRT (Zero-voltage Ride-through)

• Active power continuously adjustable (0~100%)

• Reactive power control with power factor from 0.9 lagging to 0.9 leading

• DC input voltage up to 1000V

• Latest 32 bit DSP chip, advanced digital lock-in technique, more quickly and precisely

• -30℃~+55℃ continuously operating at rated power

• Continuously and stably working in high altitude environment

• Auxiliary heater (Optional)

 

3. Photovoltaic Grid-Connected Inverter SG630MX-E Images

 

4. Photovoltaic Grid-Connected Inverter SG630MX-E Specification

Input Side Data

Max. PV input power

713KW

Max. PV input voltage

1000V

Startup voltage

635V

Min. operation voltage

615V

Max. PV input current

1160A

MPP voltage range

615~850V

No. of DC inputs

8

Output Side Data

Nominal AC output power

630kVA

Max. AC output apparent power

700KVA

Max. AC output current

1010A

THD

< 3 %  (Nominal power)

Nominal AC voltage

400V

AC voltage range

320V~460V

Nominal grid frequency

50/60Hz

Grid frequency range

47~52/57~62Hz

Power factor

>0.99@default value at nominal power, (adj. 0.9 overexited ~0.9 underexited)

Isolated transformer

No

DC current injection

<0.5 %In

Efficiency

Max. efficiency

98.60%

Max. European efficiency

98.50%

Protection

Input side disconnection device

DC load switch

Output side disconnection device

AC load Switch

DC overvoltage protection

Yes

AC overvoltage protection

Yes

Grid monitoring

Yes

Ground fault monitoring

Yes

Over temperature protection

Yes

Insulation monitoring

Yes

Surge arrester for auxiliary supply

Yes

General Data

Dimensions(W×H×D)

1606×2304×860mm

Weight

1700kg

Operating ambient temperature range

-30~65℃(>55℃ derating)

Night power consumption

<100W

External auxiliary supply voltage

400V

Cooling method

Temperature controlled air-cooling

Ingress protection rating

IP21

Allowable relative humidity range

0~95% no condensing

Max. operating altitude

6000m (>3000m derating)

Fresh air consumption

4500 m3/h

Display

Colored touch screen

Communication

RS485/Modbus, Ethernet(Opt.)

 

5. FAQ of Photovoltaic Grid-Connected Inverter SG630MX-E

Q1. What is the difference between inverter and solar inverter?

A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power 

Q2. What is the difference between MPPT&PWM?

A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

Q: What is the maximum temperature range for a solar inverter?
The maximum temperature range for a solar inverter typically depends on the specific model and manufacturer. However, most solar inverters are designed to operate within a range of -20°C to 50°C (-4°F to 122°F).
Q: Can a solar inverter be used in mobile or portable solar systems?
Yes, a solar inverter can be used in mobile or portable solar systems. Solar inverters are essential components that convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various devices. They are designed to be adaptable and can be used in a wide range of applications, including mobile or portable solar systems. This allows individuals to harness solar energy and use it to power their devices wherever they go, making it a convenient and sustainable solution for on-the-go power needs.
Q: What are the different output waveforms of a solar inverter?
The different output waveforms of a solar inverter include sine wave, modified sine wave, and square wave.
Q: What is the maximum operating temperature of a solar inverter?
The maximum operating temperature of a solar inverter typically ranges between 40 to 50 degrees Celsius, depending on the specific model and manufacturer.
Q: Can a solar inverter be used in conjunction with a battery management system?
Yes, a solar inverter can be used in conjunction with a battery management system. In fact, combining a solar inverter with a battery management system allows for efficient energy storage and utilization, as the battery management system controls the charging, discharging, and overall management of the batteries, while the solar inverter converts the direct current (DC) power from the batteries into alternating current (AC) power for use in homes or businesses. This integration enables a more sustainable and reliable energy solution by maximizing the use of solar energy and providing backup power during grid outages.
Q: What is the role of a power control feature in a solar inverter?
The role of a power control feature in a solar inverter is to efficiently manage and optimize the power output generated by the solar panels. It helps regulate the flow of electricity, maintaining a stable voltage and frequency, while also ensuring that the maximum power point tracking (MPPT) is achieved. This feature allows for better performance, increased energy production, and the ability to adapt to changing sunlight conditions, ultimately maximizing the overall efficiency of the solar inverter system.
Q: What is the role of a fault detection system in a solar inverter?
The role of a fault detection system in a solar inverter is to monitor the performance and health of the inverter and solar panels, and to detect any faults or abnormalities that may occur during operation. It helps to identify issues such as short circuits, voltage fluctuations, overheating, or component failures, which can affect the efficiency and safety of the solar power system. By quickly identifying and alerting the user or system operator about these faults, the fault detection system allows for timely maintenance or repair, ensuring optimal performance and longevity of the solar inverter.
Q: What is the difference between a grid-connected inverter and an off-grid inverter? What are the advantages of a hybrid inverter?
Off-grid inverter is equivalent to their own to establish an independent small power grid, mainly to control their own voltage, is a voltage source.
Q: Can a solar inverter be used with energy storage systems?
Yes, a solar inverter can be used with energy storage systems. In fact, solar inverters are often used in conjunction with energy storage systems to convert the direct current (DC) energy generated by solar panels into alternating current (AC) energy for use in homes or businesses, while also charging and discharging energy from the storage system as needed. This allows for greater flexibility and efficiency in managing and utilizing solar energy.
Q: What is the difference between a string inverter and a microinverter?
A string inverter is a central inverter that converts the DC power generated by multiple solar panels connected in series into AC power. On the other hand, a microinverter is a smaller inverter that is attached to each individual solar panel, converting the DC power generated by each panel into AC power. The main difference is that string inverters are used for multiple panels, while microinverters are used for individual panels.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords