• All in One Solar Inverter - 3 Phase Inverter Second Generation 6k Solar Inverter Made in China System 1
  • All in One Solar Inverter - 3 Phase Inverter Second Generation 6k Solar Inverter Made in China System 2
  • All in One Solar Inverter - 3 Phase Inverter Second Generation 6k Solar Inverter Made in China System 3
All in One Solar Inverter - 3 Phase Inverter Second Generation 6k Solar Inverter Made in China

All in One Solar Inverter - 3 Phase Inverter Second Generation 6k Solar Inverter Made in China

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
0 watt
Supply Capability:
10000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Three Phase Inverter Second Generation 6k Solar Inverter

Solar ac power system consists of solar panels, charge controllers, inverter and battery; Solar energy does not include inverter dc power system. Inverter is a kind of power conversion device, inverter by incentives can be divided into self-excited oscillation inverter and separately excited oscillation inverter.

 

Features of Three Phase Inverter Second Generation 6k Solar Inverter

Standard 10 years warranty, 5-15 years optional

Built-in Gprs as option

Built-in Wifi as option

Smaller and lighter, only 18kg

High performance DSP for algorithm control

VDE-AR-N 4105 certification

New topology design

Dual MPPT design

Multi-button touch interface

LCD screen visible at night

Have anti-shading function

 

Advantages of Three Phase Inverter Second Generation 6k Solar Inverter

Longer life cycle

Plug and play

Free monitoring through our webportal

Very lower internal temperature

Easy transportation and installation

Faster CPU speed

Adjustable active and reactive power

Maximum conversion effciency up to 98.3%,Euro up to 97.7%

More flexible system design

User friendly operation

 

Technical Data of Three Phase Inverter Second Generation 6k Solar Inverter

 

TypeOmniksol-6k-TL2-TH
Input(DC)
Max.PV Power6300W
Max,DC Voltage1000V
Nominal DC Voltage640V
Operating MPPT Voltage Range150-800V
MPPT Voltage Range at Nominal Power270-800V
Start up DC Voltage 180V
Turn off DC Voltage150V
Max, DC Current(A/B)11A/11A
Max, Short Cicuit Current for each MPPT16A/16A
Number of MPP trackers2
Number of DC ConnectionA:2/B:2
DC Connection TypeMC4 connector

 

Output(AC)
Max,AC Apparent Power6000VA
Nominal AC Power (cos phi = 1)6000W
Nominal Grid Voltage220V/230V/240V
Nominal Grid Frequency50Hz/60Hz
Max, AC Current9.2A
Grid Voltage Range**185-276V
Grid Frequency Range**45-55Hz/55-65Hz
Power Factor0.9 capacitive... 0.9 inductive
Total Harmonic Distortion(THD)<2%
Feed in Starting Power30W
Night time Power Consumption<1W
Standby Consumption<10W
AC Connection TypePlug-in connertor

 

 

Efficiency
Max,Efficiency98.2%
Euro Efficiency97.5%
MPPT Efficiency99.9%

 

Safety and Protection
DC Insulation MonitoringYes
DC SwitchOptional
Residual Current Monitoring Unit (RCMU)Integrated
Grid Monitoring with Anti-islandingYes
Electricity Fuse ProtectionYes
Protection ClassⅠ(According to IEC 62103)
Overvoltage CategoryPVⅡ/Mains Ⅲ(According to IEC 62109-1)

 

Reference Standard
Safety StandardEN 62109, AS/NZS 3100
EMC StandardEN 6100-6-1, EN 6100-6-2, EN 6100-6-3 EN 6100-6-4, EN 6100-3-2, EN 6100-3-3
Grid StandardVDE-AR-N4105. VDE-0126-1-1,G83/1,EN 50438,RD1699,CEI 0-21, AS4777,C10/C11
Physical Structure
Dimensions352x421x154.5mm
Weight18kg
Environmental Protection RatingIP 65 (According to IEC 60529)
Cooling ConceptNatural convection
Mounting InformationWall bracket

 

General Data
Operating Temperature Range-25℃ to +60℃(derating above 45℃)
Relative Humidity0% to 98%, no condensation
Max. Altitude (above sea level)2000m
Noise Type<40dB
Isolation TypeTransformerless
Display20 x 4 LCD (800x480 TFT Graphic Display optional)
Data CommunicationRS485(WiFi, GRPS optional)
Computer CommunicationUSB
Standard Warranty10 Years (5-15 years optional)

 

IMages of Three Phase Inverter Second Generation 6k Solar Inverter

Three Phase Inverter Second Generation 6k Solar Inverter made in China

Three Phase Inverter Second Generation 6k Solar Inverter made in China

Three Phase Inverter Second Generation 6k Solar Inverter made in China

 

FAQ

Q: Do you have the CE, TUV, UL Certification?

A: We’ve already passed all the tests, and any certificate is available.

Q: Have you ever sold your products to companies in my country?

A: Of course, we have customers in all general PV markets, but I think we should expand our market share along with the market growth.

Q: When did your company set up?  You are a new company, how can I believe your quality?

A: We entered into Solar PV industry in 2005, now we have several plants in manufacturing of a-Si and c-Si panels, and our capacity is 220MW per year. Till now we have already passed all the tests by authorized laboratories, e.g. TUV, CE, UL.

 Q: Can you help us install the module if we cooperate with you?

A: We haven’t entered into installation sector, but we have the plan in near future.

Q: How do you pack your products?

A: We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Q: Can you do OEM for us?

A: Yes, we can.

Q: Can we visit your factory?

A: Surely, I will arrange the trip basing on your business schedule.

 

Q: Can a solar inverter be used with a solar-powered water pumping system?
Yes, a solar inverter can be used with a solar-powered water pumping system. A solar inverter is responsible for converting the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which is required to power the water pump. Therefore, a solar inverter is a crucial component in ensuring the efficient operation of a solar-powered water pumping system.
Q: What is the role of a solar inverter in a solar-powered ventilation system?
The role of a solar inverter in a solar-powered ventilation system is to convert the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which is the type of electricity used in most household appliances. This conversion allows the ventilation system to effectively utilize the solar energy and power the fans, motors, or other components of the system.
Q: Can a solar inverter be integrated with smart home systems?
Yes, a solar inverter can be integrated with smart home systems. Smart home systems are designed to connect and control various devices in the home, including solar inverters. By integrating a solar inverter with a smart home system, homeowners can monitor and control their solar energy production, consumption, and storage, as well as optimize energy usage based on real-time data. This integration allows for greater efficiency, convenience, and cost savings in managing solar power within a smart home ecosystem.
Q: Can a solar inverter be integrated with a smart home system?
Yes, a solar inverter can be integrated with a smart home system. By connecting the solar inverter to the smart home system, users can monitor and control their solar energy production and consumption remotely. This integration allows for better energy management, optimizing the use of solar power, and potentially saving on electricity bills.
Q: What are the safety features in a solar inverter?
Playing a crucial role in the conversion of direct current (DC) electricity from solar panels to alternating current (AC) electricity, solar inverters, also known as photovoltaic (PV) inverters, are equipped with various safety features to ensure their safe and efficient operation. Among the primary safety features of a solar inverter is ground fault protection. This feature is designed to detect any leakage of current to the ground, which may indicate a fault in the system. If a ground fault is detected, the inverter will immediately shut down to prevent potential electrocution hazards. To safeguard against overvoltage situations, solar inverters are equipped with surge protection devices (SPDs). These devices divert excessive voltage spikes or surges to the earth, thereby protecting the inverter and other connected electrical equipment from damage. In the event of a grid power outage or blackout, solar inverters have anti-islanding protection. This feature ensures that the inverter automatically disconnects from the grid, preventing power backfeeding, which could pose a serious threat to utility workers attempting to repair the grid. Temperature monitoring is another crucial safety feature in solar inverters. With the potential for heat generation during operation, inverters are equipped with temperature sensors to monitor internal temperature. If the temperature exceeds the safe limit, the inverter will automatically shut down to prevent potential fire hazards. Additionally, solar inverters often incorporate built-in arc fault circuit interrupters (AFCIs). These devices are designed to detect and interrupt dangerous arc faults that may occur due to damaged or deteriorating wiring connections. By promptly stopping the flow of electricity, AFCIs help prevent electrical fires. Lastly, many solar inverters feature advanced monitoring and diagnostic systems. These systems provide real-time data and alerts, enabling users or installers to promptly identify and address potential safety issues. In conclusion, the safety features in a solar inverter are essential for ensuring the secure and reliable operation of the system. These features protect against electrical hazards, prevent damage to the inverter and connected equipment, and contribute to the overall safety of the solar power generation system.
Q: What is the role of a power monitoring feature in a solar inverter?
The role of a power monitoring feature in a solar inverter is to constantly monitor and measure the amount of power being generated by the solar panels. This feature allows users to track the performance of their solar system, detect any issues or malfunctions, and optimize the energy output for maximum efficiency. It provides real-time data on the power production, enabling users to make informed decisions regarding energy usage and grid integration.
Q: Can a solar inverter be used with different types of mounting systems?
Yes, a solar inverter can be used with different types of mounting systems. The compatibility of the inverter with different mounting systems depends on factors such as the voltage and power requirements, as well as the communication protocols. However, most modern solar inverters are designed to be versatile and can be used with various types of mounting systems, including roof-mounted, ground-mounted, and pole-mounted systems.
Q: What are the key factors affecting the lifespan of a solar inverter?
The key factors affecting the lifespan of a solar inverter include the quality of components used in its manufacturing, the design and construction of the inverter, the operating conditions and environment it is subjected to, and the maintenance and care it receives throughout its lifespan.
Q: Can a solar inverter be used in systems with different module currents?
Yes, a solar inverter can be used in systems with different module currents. Solar inverters are designed to convert the DC power produced by the solar panels into AC power for use in the electrical grid or for powering appliances. They typically have a wide range of input voltage and current ratings to accommodate different solar panel configurations. As long as the total power output of the solar panels is within the specifications of the inverter, it can be used in systems with varying module currents.
Q: How does shading affect the performance of a solar inverter?
Shading has a significant impact on the performance of a solar inverter. When a solar panel is partially shaded, it reduces the amount of sunlight reaching the cells, leading to a decrease in energy production. This can result in a decrease in overall system efficiency and output. Shading also creates hotspots on the shaded cells, which can damage the panels and reduce their lifespan. To mitigate these effects, advanced solar inverters employ technologies like maximum power point tracking (MPPT) to optimize energy production even in shaded conditions.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords