• Supply Hot Rolled Angle Steel to Africa Market System 1
  • Supply Hot Rolled Angle Steel to Africa Market System 2
  • Supply Hot Rolled Angle Steel to Africa Market System 3
Supply Hot Rolled Angle Steel to Africa Market

Supply Hot Rolled Angle Steel to Africa Market

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
20000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Standard:
GB
Technique:
Hot Rolled
Shape:
LTZ
Surface Treatment:
Black
Steel Grade:
Q235
Certification:
SGS
Thickness:
2.5mm
Length:
6m
Net Weight:
3kg

OKorder is offering high quality Hot Rolled Steel Angle at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Steel Angles are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Steel Angles are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195 – 235

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled


Sizes: 25mm-250mm

a*t

25*2.5-4.0

70*6.0-9.0

130*9.0-15

30*2.5-6.6

75*6.0-9.0

140*10-14

36*3.0-5.0

80*5.0-10

150*10-20

38*2.3-6.0

90*7.0-10

160*10-16

40*3.0-5.0

100*6.0-12

175*12-15

45*4.0-6.0

110*8.0-10

180*12-18

50*4.0-6.0

120*6.0-15

200*14-25

60*4.0-8.0

125*8.0-14

250*25


FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.


Alloy No

Grade

Element (%)

C

Mn

S

P

Si








Q235

B

0.12—0.20

0.3—0.7

≤0.045

≤0.045

≤0.3








Alloy No

Grade

Yielding strength point( Mpa)

Thickness (mm)

≤16

>16--40

>40--60

>60--100







Q235

B

235

225

215

205

Alloy No

Grade

Tensile strength (Mpa)

Elongation after fracture (%)

Thickness (mm)


≤16

>16--40

>40--60

>60--100








Q235

B

375--500

26

25

24

23

Images:

 


Supply Hot Rolled Angle Steel to Africa Market

Supply Hot Rolled Angle Steel to Africa Market


Q: What is the maximum allowable torsional buckling stress for a steel angle?
The maximum allowable torsional buckling stress for a steel angle depends on several factors, including the material properties of the steel, the geometry of the angle, and the applied load conditions. In general, torsional buckling occurs when a member twists under an applied torque, resulting in a loss of stability and potential failure. To prevent torsional buckling, design codes and standards provide guidelines and formulas to determine the maximum allowable stress. For example, the American Institute of Steel Construction (AISC) provides a formula for the calculation of torsional buckling stress in their Steel Construction Manual. This formula takes into account the section properties of the angle, such as the moment of inertia and the radius of gyration, along with the slenderness ratio and the effective length of the member. It is important to note that the maximum allowable torsional buckling stress varies depending on the specific design requirements and safety factors used in the design process. Therefore, it is essential to refer to the relevant design codes and consult with a structural engineer to determine the specific maximum allowable torsional buckling stress for a given steel angle in a particular design situation.
Q: What is the maximum axial load for a steel angle?
The maximum axial load for a steel angle depends on several factors including the dimensions and thickness of the angle, the grade and quality of the steel, and the specific application or use of the angle. However, in general, the maximum axial load for a steel angle can be determined by calculating its allowable stress or ultimate strength. The allowable stress is the maximum stress that a material can withstand without experiencing permanent deformation or failure. To calculate the allowable stress for a steel angle, you would need to know the yield strength of the steel. This is the stress at which the material begins to permanently deform or yield. The maximum axial load can then be calculated by multiplying the allowable stress by the cross-sectional area of the angle. On the other hand, the ultimate strength is the maximum stress that a material can withstand before it fractures or breaks. If the ultimate strength of the steel is known, the maximum axial load can be calculated by multiplying the ultimate strength by the cross-sectional area of the angle. It is important to note that the maximum axial load also depends on the length and support conditions of the steel angle. Longer angles or angles with inadequate support may experience additional bending or buckling, which can affect their maximum load-bearing capacity. In summary, the maximum axial load for a steel angle can be determined by calculating its allowable stress or ultimate strength, considering the dimensions, thickness, grade, and quality of the steel, as well as the specific application and support conditions. It is recommended to consult engineering handbooks or reference materials specific to the type of steel angle being used for accurate load capacity calculations.
Q: Can steel angles be recycled?
Indeed, it is possible to recycle steel angles. Steel, being one of the most recycled materials globally, also applies to steel angles. Once steel angles are deemed unnecessary or have fulfilled their lifespan, they can undergo collection, processing, and transformation into fresh steel products. By recycling steel angles, the conservation of natural resources, reduction of energy consumption, and minimization of waste are achieved. Consequently, steel angles prove to be an environmentally conscious and sustainable option for construction and various other applications.
Q: Can steel angles be welded together?
Yes, steel angles can be welded together. Welding is a common method used to join steel angles, as well as other steel components, in various industries. This process involves melting the base metals to be joined and adding a filler material to create a strong and permanent bond. Welding angles together allows for the creation of structural connections, support frames, and other applications where a strong and durable joint is required. Welding techniques such as MIG (Metal Inert Gas) welding, TIG (Tungsten Inert Gas) welding, or stick welding can be used depending on the specific requirements of the project. It is important to follow proper welding procedures, including selecting appropriate welding techniques, using the correct welding consumables, and ensuring proper preparation and alignment of the steel angles, to achieve successful and reliable welded joints.
Q: What are the limitations of using steel angles in high-temperature applications?
One limitation of using steel angles in high-temperature applications is that steel has a relatively low melting point compared to other materials like refractory metals or ceramics. At high temperatures, steel can start to deform, lose its strength, and even melt, leading to structural failures. Additionally, steel can undergo significant thermal expansion and contraction, which can cause dimensional changes and potential cracking in the angles. Therefore, alternative materials with higher melting points and better resistance to thermal expansion may be more suitable for high-temperature applications.
Q: How do steel angles contribute to the overall aesthetics of a building?
Steel angles can contribute to the overall aesthetics of a building by adding visual interest and architectural appeal. The clean lines and angular profiles of steel angles can create a modern and sleek look, enhancing the overall design of the structure. Additionally, steel angles can be used to create unique shapes and patterns, adding a sense of uniqueness and creativity to the building's appearance.
Q: What is the maximum span for a steel angle beam?
The maximum span for a steel angle beam depends on several factors, including the size and shape of the beam, the load it is supporting, and the allowable deflection criteria. Generally, the maximum span for a steel angle beam can range from a few feet to several dozen feet. It is important to consult structural engineering codes and guidelines, as well as engage a professional engineer, to determine the specific maximum span for a steel angle beam based on the project requirements and conditions.
Q: Are steel angles suitable for vehicle ramps?
Yes, steel angles are suitable for vehicle ramps. Steel angles provide strength and stability, making them an ideal choice for supporting the weight of vehicles and ensuring safe and durable ramps.
Q: Can steel angles support heavy machinery or equipment?
Yes, steel angles can support heavy machinery or equipment. Steel angles are commonly used in construction and engineering due to their strength and durability. They are typically made from hot-rolled steel and can withstand heavy loads and forces. Steel angles provide structural support and stability, making them suitable for supporting heavy machinery or equipment. They are often used as frames or brackets to hold and secure heavy objects. Additionally, steel angles can be welded or bolted together to create a strong and stable base for heavy machinery. Overall, steel angles are a reliable choice for supporting heavy machinery or equipment due to their high load-bearing capacity and structural integrity.
Q: Can steel angles be used for conveyor systems?
Yes, steel angles can be used for conveyor systems. Steel angles are commonly used in construction and industrial applications due to their strength, durability, and versatility. In conveyor systems, steel angles are often used to provide structural support and stability to the conveyor framework. They can be used to connect various components of the conveyor system, such as the conveyor belt, rollers, and motor, ensuring proper alignment and smooth operation. Additionally, steel angles can be easily fabricated and customized to meet specific design requirements, making them a suitable choice for conveyor systems of different sizes and configurations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords