• Prime Low Carbon Steel Unequal Angle Bars in High Quality System 1
  • Prime Low Carbon Steel Unequal Angle Bars in High Quality System 2
  • Prime Low Carbon Steel Unequal Angle Bars in High Quality System 3
Prime Low Carbon Steel Unequal Angle Bars in High Quality

Prime Low Carbon Steel Unequal Angle Bars in High Quality

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
100 m.t.
Supply Capability:
20000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

OKorder is offering Prime Low Carbon Steel Unequal Angle Bars in High Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Prime Low Carbon Steel Unequal Angle Bars in High Quality are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries

 

Product Advantages:

OKorder's Prime Low Carbon Steel Unequal Angle Bars in High Quality are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: Q195 – 235

Certificates: ISO, SGS, BV, CIQ

Length: 6m – 12m, as per customer request

Packaging: Export packing, nude packing, bundled

UNEQUAL ANGLE STEEL
size(mm)a(mm)a1(mm)thickness(mm)kg/mlength(m)
75*50*5755054.8086m,9m,12m
75*50*6755065.6996m,9m,12m
75*50*8755087.4316m,9m,12m
100*75*71007579.346m,9m,12m
100*75*810075810.66m,9m,12m
100*75*910075911.86m,9m,12m
100*75*101007510136m,9m,12m
100*75*12100751215.46m,9m,12m
125*75*712575710.76m,9m,12m
125*75*812575812.26m,9m,12m
125*75*912575913.66m,9m,12m
125*75*101257510156m,9m,12m
125*75*12125751217.86m,9m,12m
150*90*815090814.76m,9m,12m
150*90*915090916.46m,9m,12m
150*90*10150901018.26m,9m,12m
150*90*12150901221.66m,9m,12m
200*100*1020010010236m,9m,12m
200*100*122001001227.626m,9m,12m
200*100*152001001534.046m,9m,12m

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How many tons of steel products could be loaded in containers?

A3: Usually the steel products are delivered by bulk vessel because of the large quantity and the freight. However, there are no bulk vessel enter some seaports so that we have to deliver the cargo by containers. The 6m steel product can be loaded in 20FT container, but the quantity is changed according to the size, usually from 18tons to 25tons.

 

Images:

Q: What are the different methods of surface protection for steel angles?
There are several different methods of surface protection for steel angles, each with its own advantages and disadvantages. 1. Painting: One of the most common methods of surface protection is painting. This involves applying a layer of paint to the steel angle to create a barrier between the steel and the surrounding environment. Paint can provide both aesthetics and protection against corrosion. However, it may require regular maintenance and can be prone to chipping or peeling over time. 2. Galvanization: Galvanization is a process where a layer of zinc is applied to the surface of the steel angle. This creates a protective barrier that helps prevent corrosion. Galvanization can be done through either hot-dip galvanizing or electro-galvanizing. Hot-dip galvanizing involves immersing the steel angle in a bath of molten zinc, while electro-galvanizing uses an electrical current to deposit zinc onto the surface. Galvanized steel angles are highly resistant to rust and can provide long-lasting protection. 3. Powder coating: Powder coating is a dry finishing process where a fine powder is electrostatically applied to the surface of the steel angle. The powder is then cured under heat to form a hard, durable coating. Powder coating provides excellent protection against corrosion, impacts, UV rays, and chemicals. It also offers a wide range of color options and a smooth, attractive finish. However, it can be more expensive than other methods and requires specialized equipment for application. 4. Epoxy coating: Epoxy coatings are a type of protective finish made from epoxy resins. These coatings are highly resistant to chemicals, impacts, and abrasions. They provide a tough, glossy finish that can withstand harsh environments. Epoxy coatings are typically applied through a two-part system, where a resin and a hardener are mixed together before being applied to the steel angle. While epoxy coatings provide excellent protection, they can be more expensive and time-consuming to apply. 5. Metal plating: Metal plating involves covering the steel angle with a layer of metal such as chrome, nickel, or zinc. This provides a decorative finish as well as protection against corrosion. Metal plating can be done through electroplating or electroless plating processes. Electroplating uses an electrical current to deposit a thin metal layer onto the surface, while electroless plating does not require electricity and utilizes a chemical reaction to achieve the plating. Metal plating can enhance the appearance and durability of steel angles, but it may not be as effective in highly corrosive environments.
Q: What does angle 5 mean?
The specifications are expressed in millimeters of edge width * edge width * edge thickness. Such as "/ 30 x 30 x 3", that is 30 mm width equal angle, edge thickness of 3 mm. Also available models that model is the number of centimeters wide, such as angle 3#. The model does not mean the size of the different edges and sizes of the same model. Therefore, the width, the edge and the thickness of the angle iron should be filled out in the contract and other documents, so as not to be indicated by the model alone. Standard Specification for hot-rolled equal angle iron is 2#-20#.
Q: What are the different methods of surface painting for steel angles?
There exists a variety of techniques for surface painting steel angles, each offering distinct advantages and considerations. 1. Brushing: The most commonly employed method for surface painting steel angles involves the manual application of paint using a brush. Brushing provides excellent control and precision, making it well-suited for smaller projects or touch-ups. However, it may not be as efficient for larger-scale applications. 2. Spraying: When a large area needs to be painted quickly, spraying is a popular technique for painting steel angles. It involves the even distribution of paint onto the surface using a paint spray gun or aerosol canister. Spraying results in a smooth and uniform finish, but proper safety precautions, such as wearing a mask and ensuring adequate ventilation, are necessary. 3. Dipping: In this method, steel angles are immersed in a tank or container filled with paint. Dipping ensures complete coverage and is often utilized in high-volume production processes. However, it may not be suitable for angles with intricate designs or complex shapes, as excess paint may drip or accumulate unevenly. 4. Electrostatic painting: Electrostatic painting involves charging the paint particles and applying them to a grounded steel angle. This creates an electromagnetic attraction, resulting in an even and efficient coverage. This technique is commonly employed in industrial settings and aids in reducing paint waste and overspray. 5. Powder coating: Powder coating is a dry finishing process that entails the application of a fine powder onto the surface of a steel angle. The powder is then heated and fused onto the metal, creating a durable and visually appealing finish. Powder coating offers excellent corrosion resistance and can be done in a variety of colors and textures. However, specialized equipment is required, and it may not be suitable for small-scale or on-site applications. When selecting a surface painting method for steel angles, careful consideration must be given to factors such as project size and complexity, desired finish quality, environmental conditions, and available resources. Seeking guidance from a professional painter or coating specialist can help determine the most appropriate method for a specific application.
Q: How do steel angles compare to wooden beams?
Steel angles and wooden beams possess distinct characteristics and abilities that render them suitable for diverse applications. Steel angles, being comprised of steel, demonstrate exceptional strength and longevity. They exhibit remarkable tensile strength and resist bending and warping even when subjected to substantial loads. This renders them an excellent choice for providing structural support in constructions such as buildings, bridges, and other similar projects. Moreover, steel angles possess the advantage of being non-combustible, thereby enhancing fire safety. Conversely, wooden beams offer their own set of advantages. As a natural material, wood is readily accessible and renewable, making it a more environmentally conscious option when compared to steel. Additionally, wooden beams possess an inherent aesthetic appeal, particularly in traditional or rustic designs. They can be effortlessly customized and shaped, enabling the creation of intricate and imaginative designs. Nevertheless, wooden beams do have certain limitations with regards to strength and durability. They do not exhibit the same level of robustness as steel angles and are susceptible to bending, warping, and rotting over time. Additionally, wood is combustible, which can pose safety concerns. In conclusion, both steel angles and wooden beams possess their own unique strengths and weaknesses. Steel angles excel in projects necessitating high strength and durability, while wooden beams offer a more natural and visually appealing option. Ultimately, the choice between the two depends on specific project requirements, budgetary considerations, and personal preferences.
Q: Are there any limitations or restrictions on the use of steel angles?
Yes, there are limitations and restrictions on the use of steel angles. These limitations can include load-bearing capacity, bending and torsional resistance, and the specific application requirements. Steel angles may not be suitable for certain structural or engineering purposes where other materials or shapes may be more appropriate. Additionally, local building codes and regulations may impose specific restrictions on the use of steel angles, such as minimum sizes, spacing, or connection requirements.
Q: What is the typical thickness of a steel angle?
The typical thickness of a steel angle can vary depending on the specific application and the required strength. However, in general, steel angles are available in a range of thicknesses starting from 1/8 inch (3.18 mm) and can go up to 3/4 inch (19.05 mm) or even thicker. The chosen thickness will ultimately depend on factors such as the load-bearing requirements, structural design, and the desired level of durability.
Q: What is the purpose of using steel angles in construction?
Steel angles are commonly used in construction for several purposes. The primary purpose of using steel angles is to provide structural support and stability to various components of a building or structure. These angles are often used to reinforce corners, edges, and joints, adding strength and rigidity to the overall structure. Additionally, steel angles are used to distribute and transfer loads or forces within the construction. They help to evenly distribute the weight and stress across different parts of the structure, preventing any concentrated points of weakness. Moreover, steel angles are versatile and can be easily customized and fabricated to meet specific construction requirements. They can be cut, drilled, and welded, allowing for seamless integration into a wide range of construction projects. Furthermore, steel angles offer excellent durability and resistance to corrosion, making them suitable for both indoor and outdoor applications. They can withstand heavy loads, extreme weather conditions, and provide long-lasting support to the structure. In summary, the purpose of using steel angles in construction is to enhance the structural integrity, provide support and stability, distribute loads, and ensure the longevity of the building or structure.
Q: What are the different types of steel angles connections for mezzanine floors?
Mezzanine floors can utilize various steel angle connections to achieve structural stability and support. These connections are crucial for safely accommodating intended loads and usage. 1. Bolted Connections: Mezzanine floors commonly employ bolted connections due to their strength and security. By using bolts, the steel angles are attached to create a rigid and stable framework. If necessary, bolted connections can be easily adjusted or disassembled. 2. Welded Connections: To achieve maximum stability, welded connections join the steel angles using welding techniques. This type of connection provides a permanent and robust bond between the angles. Welded connections are often preferred for heavy-duty mezzanine floors with high load-bearing requirements. 3. Clip Connections: Clip connections are a popular choice for mezzanine floors due to their ease of installation and flexibility. Metal clips or brackets secure the steel angles together in this connection type. Adjusting or disassembling clip connections is simple, allowing for future modifications or reconfigurations of the mezzanine floor layout. 4. Gusset Plate Connections: To reinforce the joint between steel angles, gusset plate connections utilize additional steel plates known as gusset plates. These plates are typically welded or bolted to the angles, adding strength and stability to the connection. Gusset plate connections are commonly used when extra reinforcement is required for mezzanine floors. 5. Cleat Connections: Cleat connections involve using a cleat plate to connect two steel angles. One angle is attached to the cleat plate, while the other angle is bolted or welded to the plate. This connection type provides a strong and secure joint, especially for heavy-duty mezzanine floors. Compliance with local building codes and regulations is crucial when selecting steel angle connections for mezzanine floors. Consulting a structural engineer or a professional with expertise in mezzanine floor construction is recommended to ensure correct design and installation of connections for optimal safety and performance.
Q: How do you calculate the deflection of a loaded steel angle?
To calculate the deflection of a loaded steel angle, you would typically use formulas based on the principles of structural mechanics, such as Euler-Bernoulli beam theory. These formulas take into account the dimensions and properties of the angle, applied loads, and support conditions. By plugging in the appropriate values, you can determine the deflection of the angle under the given load.
Q: Can steel angles be used for pipe supports?
Yes, steel angles can be used for pipe supports. Steel angles provide structural strength and stability, making them suitable for supporting pipes and ensuring their stability and alignment.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches