• Special Steel SAE4140 Alloy Steel Round Bar System 1
  • Special Steel SAE4140 Alloy Steel Round Bar System 2
  • Special Steel SAE4140 Alloy Steel Round Bar System 3
Special Steel SAE4140 Alloy Steel Round Bar

Special Steel SAE4140 Alloy Steel Round Bar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Alloy Steel,Stainless Steel,Deformed Steel,Spring Steel,Bearing Steel,Gear Steel
Shape:
Steel Billets,Steel Round Bar,Steel Angle,Steel Square Bar,Steel Flat Bar,Steel Wire Rod,Steel Sheet,Steel Coil
Technique:
Spring,EFW,Extruded,Saw,Forged,ERW,Cold Drawn,Cold Rolled,Hot Rolled
Surface Treatment:
PVDF Coated,Black,Bright,Polished,Chromed Passivation,Dry,Oiled,Color Coated,Copper Coated,Coated,Galvanized
Certification:
RoHS,UL,BV,SGS,ISO,BSI,API,CE,IBR

Product information

1. Grade: 4140,SAE4140,  42CrMo4,  1.7225,SCM440        

2. Specification: Dia: 16~800mm  Length:2000-13000mm or as required  

3. Process:  EAF+LF+VD             

4. Technique:Forged                    

5.Treatment:hot rolled,cold drawn     

 6.Mechanical performance:

 

Strength of extension

1080MPA

Yield point

930MPA

Elongation

12%

Contractibility rate

45%

Impacting energy

63J

 

7.Chemical composition(for reference only): 

 

Grade

   C

   Si

   Mn

   P≤

   S≤

   Cr

   Mo

SAE4140

0.38/0.43

0.15/0.35

0.75/1.00

0.035

0.035

0.80/1.10

0.15/0.25

  1. 8. Compared grades of 4140 steel

 

  GB-China

  AISI-America

  DIN-GERMANY

  JIS-Japan

 42CrMo

 4140

1.7225

42CrMo4 

 SCM440

Product show

.jpg

Workshop show

Special Steel SAE4140 Alloy Steel Round Bar

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q: How does special steel perform in radiation shielding applications?
Special steel is renowned for its outstanding performance in shielding against radiation, widely recognized for its unique properties and composition. It is an ideal choice in safeguarding against harmful radiation due to its exceptional qualities. One significant advantage of special steel is its remarkable density, which allows for the effective absorption and attenuation of radiation. This attribute enables it to serve as a barrier, effectively preventing the penetration of harmful radiation into sensitive areas. By significantly reducing radiation exposure, special steel plays a crucial role in diverse industries, including nuclear power plants, medical facilities, and aerospace applications. Furthermore, special steel possesses excellent mechanical strength and durability, ensuring long-lasting and reliable radiation shielding. It can withstand extreme conditions while maintaining its effectiveness over time. This durability is particularly vital in environments with continuous or ongoing radiation exposure. Moreover, special steel exhibits high resistance to corrosion and degradation, making it indispensable in radiation shielding applications. This resistance ensures the material remains intact and can provide the necessary protection against radiation for an extended period. As a result, frequent maintenance and replacement are minimized, leading to cost savings and improved operational efficiency. Additionally, special steel can be customized to meet specific requirements, allowing for tailored designs and configurations. This flexibility enables the development of radiation shielding solutions optimized for the unique needs of various applications. Whether it involves shielding panels, containers, or enclosures, special steel can be adapted to provide the most efficient and effective radiation protection. In summary, special steel excels in radiation shielding applications due to its high density, mechanical strength, durability, corrosion resistance, and customization capabilities. It offers reliable and long-lasting radiation protection, ensuring the safety of personnel and equipment in industries where radiation exposure is a concern.
Q: What are the different passivation techniques used for special steel?
There are several passivation techniques used for special steel, including chemical passivation, electrochemical passivation, and mechanical passivation. Chemical passivation involves the use of acidic solutions to remove impurities from the steel's surface and create a passive oxide layer. Electrochemical passivation utilizes an electrical current to form the protective oxide layer on the steel's surface. Mechanical passivation involves processes such as shot blasting or grinding to remove contaminants and improve the surface quality of the steel. These techniques help enhance the corrosion resistance and overall performance of special steel.
Q: Can special steel be used in the mining industry?
Yes, special steel can be used in the mining industry. Special steel, such as high-strength and wear-resistant steels, can be utilized for various applications in the mining industry, including the manufacturing of heavy machinery, equipment, and tools used in mining operations. These steels offer superior durability, strength, and resistance to abrasion, making them suitable for the harsh and demanding conditions present in mining environments.
Q: Can special steel be used in the production of jewelry?
Yes, special steel can be used in the production of jewelry. It is commonly used in industrial and contemporary jewelry designs due to its durability, strength, and unique aesthetic appeal. However, it is less commonly used in traditional or fine jewelry where precious metals like gold and silver are preferred.
Q: What is the role of carbon in special steel?
Special steel relies on carbon to significantly impact its properties and performance. This type of steel is specifically engineered to showcase exceptional characteristics like high strength, hardness, wear resistance, and corrosion resistance. Carbon is a key alloying element in special steel, and its content dictates many of these desired properties. To begin, carbon is responsible for enhancing the strength and hardness of special steel. When carbon is introduced into the iron matrix, it forms iron carbides, which are exceptionally hard and provide structural integrity to the steel. The higher the carbon content, the greater the steel's hardness and strength. Consequently, special steel is well-suited for applications that demand high toughness, durability, and resistance to deformation, such as the manufacturing of tools, dies, and industrial machinery components. Additionally, carbon contributes to the wear resistance of special steel. The presence of carbon enhances the steel's ability to withstand abrasion and endure extreme conditions. This is especially important in industries like mining, construction, and oil and gas, where components face intense wear and friction. Moreover, carbon plays a crucial role in determining the machinability and weldability of special steel. The carbon content influences how the steel responds to heat treatment, affecting its ease or difficulty of machining and welding. Striking the right balance of carbon content is essential to ensure that special steel can be easily worked on and fabricated into complex shapes without compromising its properties. Lastly, carbon influences the corrosion resistance of special steel. Although steel is generally susceptible to corrosion, the addition of specific amounts of carbon can enhance its resistance to rusting and other forms of corrosion. This is particularly important in applications where the steel is exposed to harsh environments, such as in the marine or chemical industries. In conclusion, carbon plays a vital role in special steel by enhancing its strength, hardness, wear resistance, machinability, weldability, and corrosion resistance. The precise amount of carbon added to the steel is carefully controlled to achieve the desired properties for specific applications. This versatility and sought-after nature make special steel a highly valued material across various industries.
Q: How does special steel perform in chemical processing applications?
Due to its outstanding performance and unique properties, special steel finds wide application in chemical processing. Its high resistance to corrosion is a key advantage in this field. Specifically designed to withstand harsh chemical environments, special steel ensures reliability and durability. Compared to other materials, special steel provides superior protection against corrosion in chemical processing applications where corrosive substances are present. It exhibits exceptional resistance to acids, alkalis, and various chemical compounds, guaranteeing the integrity and longevity of equipment and components. In addition, special steel offers excellent mechanical properties, including high strength and toughness, which are essential in chemical processing. It can endure high temperatures, pressure, and mechanical stresses commonly encountered in these environments. Its robustness and ability to maintain structural integrity under extreme conditions make it the preferred choice for critical components such as reactors, vessels, and piping systems. Special steel also contributes to the overall efficiency and safety of chemical processing operations. Its resistance to scaling and fouling reduces the risk of contamination and blockages, minimizing downtime for cleaning and maintenance. As a result, productivity and cost-effectiveness are improved. Furthermore, special steel is frequently chosen for its hygienic properties, making it suitable for use in the food and pharmaceutical industries. It is easy to clean and sanitize, ensuring the highest levels of product purity and compliance with industry regulations. In conclusion, special steel excels in chemical processing applications. Its corrosion resistance, mechanical strength, thermal stability, and hygienic properties make it an ideal choice for equipment and components, enhancing the reliability, efficiency, and safety of chemical processing operations.
Q: How does the demand for special steel vary across different regions?
The demand for special steel varies across different regions due to several factors such as industrial development, infrastructure projects, and manufacturing activities. Regions with robust manufacturing sectors and infrastructure development tend to have higher demand for special steel as it is used in various applications like automotive, construction, and machinery. Additionally, regions with a higher focus on technological advancements and innovation may also have a greater demand for special steel due to its unique properties and capabilities. However, regions with limited industrial activities or dependence on specific sectors may exhibit lower demand for special steel. Overall, the demand for special steel is influenced by the specific economic and industrial characteristics of each region.
Q: How does special steel contribute to the manufacturing of molds and dies?
Special steel plays a crucial role in the manufacturing of molds and dies. Molds and dies are essential tools used in various industries, such as automotive, aerospace, and electronics, for shaping and forming materials into desired shapes and sizes. These tools need to be durable, resistant to wear and tear, and capable of withstanding high temperatures and pressures. Special steel, also known as tool steel, possesses unique properties that make it an ideal material for molds and dies. Firstly, it has a high hardness, which allows the tools to maintain their shape and surface integrity even when subjected to extensive use and repetitive impacts. This hardness also helps in achieving precision and accuracy in the final product. Additionally, special steel has excellent wear resistance, which is essential as molds and dies come into contact with various materials during the manufacturing process. The resistance to wear ensures that the tools have a longer lifespan, reducing the need for frequent replacements and minimizing production downtime. Moreover, special steel has good toughness, meaning it can absorb and withstand high impact forces without fracturing or breaking. This property is crucial in molds and dies as they often undergo significant stress during the manufacturing process, especially when dealing with materials that require high pressure or extreme temperatures. Special steel is also known for its high heat resistance, enabling molds and dies to withstand the elevated temperatures used in certain manufacturing processes, such as injection molding or metal forging. This heat resistance prevents the tools from warping or losing their shape, ensuring consistent and accurate production. Furthermore, special steel can be easily machined and shaped, allowing manufacturers to create complex and intricate designs for molds and dies. This versatility is vital as different industries require unique tool designs to meet their specific manufacturing needs. In conclusion, special steel is an essential material for the manufacturing of molds and dies due to its high hardness, wear resistance, toughness, heat resistance, and machinability. Its unique properties contribute to the durability, precision, and efficiency of molds and dies, ultimately enhancing the quality and productivity of various manufacturing processes.
Q: What are the main applications of special steel in the mining transportation?
Special steel is extensively used in mining transportation for various applications. The main applications include manufacturing durable and high-strength components such as drill bits, conveyor belts, and mining equipment parts. Special steel's exceptional resistance to wear, corrosion, and impact makes it an ideal choice for these demanding environments. Additionally, special steel is used in the construction of infrastructure, such as bridges and railway tracks, ensuring the safe and efficient transportation of mined materials.
Q: How does special steel perform in terms of hardness?
Special steel typically performs very well in terms of hardness. It has a higher hardness level compared to regular steel due to the addition of various alloying elements during its production. This enhanced hardness allows special steel to withstand wear, abrasion, and deformation better than other types of steel. It also enables special steel to be suitable for specialized applications that require high strength and resistance to impact or pressure.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords