• Special Steel Round Bar AISI 4140 Alloy Steel System 1
  • Special Steel Round Bar AISI 4140 Alloy Steel System 2
  • Special Steel Round Bar AISI 4140 Alloy Steel System 3
Special Steel Round Bar AISI 4140 Alloy Steel

Special Steel Round Bar AISI 4140 Alloy Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
GB,JIS,ASTM,AISI,BS,EN,API,DIN
Technique:
Forged,ERW,Cold Rolled,Hot Rolled,Cold Drawn,Spring,EFW,Extruded
Surface Treatment:
Dry,Chromed Passivation,Polished,Bright,PVDF Coated,Oiled,Color Coated,Copper Coated,Coated,Galvanized,Black
Thickness:
as required
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Shape:
Round,Hexagonal,C Channel,Square,U Channel
Length:
as required
Net Weight:
as required

Special Steel Round Bar AISI 4140 Alloy Steel 

1.4140/1.7225/42CrMo4/SCM440/EN19
2.good price and fast delivery time
3.large stocks  

 

Equivalent grades                                              

GB

DIN

AISI

JIS

42CrMo

1.7225

 4140

SCM440

 

 

Chemical Composition                                                                                     

C

Si

Mn

Cr

 Mo

P

S

0.38-0.43

0.40max

0.60-0.90

0.90-1.20

0.15-0.30

0.035

0.035

 

 

Available size                                                                                    

Round steel bar 10-800mm

Flat steel bar 25-400mm*200-800mm

 

 

Surface condition                                                                          

Black surface/ Grinded/ Machined

 

Hardness                                                               

Annealed HBS 217 max

 

Characteristics                                                                                

4140 Alloy Steel/SAE 4140 Steel Price is engineering steel supplied in quenched and tempered conditions. Very good machinability. High toughness. High creep strength. Repeated impact resistant capability.

 

Applications                                                                                      

4140 Alloy Steel/SAE 4140 Steel Price  is use to producecomponents with high requirements on toughness, e.g. gear wheels, pinions, connecting rods, parts for mechanical engineering .

 

Heat treatment                                                      

ForgingHeat to 1150°C. Hold until uniform. Minimum forging temperature 850°C.Cool slowly in ashes or sand etc.
AnnealingHeat to 830°C-850°C.Cool in furnace.
NormalisingHeat to 870°C-900°C.Cool in still air.
Stress RelievingAnnealed: Heat to 600°C-650°C.Hardened: Heat to 500°C-550°C.Cool in still air.
HardeningHeat to 830°C-880°C. Quench in oil or polymer.
TemperingHeat to 450°C-700°C cool in still air. NB. Tempering within the range 200°C-420°C will result in temper brittleness and should be avoided.


Product show:

.jpg

Workshop show:

Special Steel Round Bar AISI 4140 Alloy Steel

FAQ:

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

4, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

5, After-sale Service?

     We provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

     We'll reply you in our first priority within 24 hours.


Q: What are the challenges in machining special steel?
Machining special steel can present several challenges due to its unique properties. One of the main challenges is its high hardness, which requires specialized cutting tools and techniques to effectively shape the steel. Another challenge is the tendency of special steel to work harden, making it more difficult to machine as the process progresses. Additionally, special steel often contains alloying elements that can cause increased tool wear and heat generation during machining, necessitating careful selection of cutting parameters to maintain tool life and prevent thermal damage. Finally, the inherent toughness of special steel can also pose challenges in terms of chip formation and control, as well as potential tool breakage. Overall, machining special steel demands expertise, precision, and appropriate tooling to overcome these challenges and achieve desired results.
Q: What are the different types of case-hardening steel?
There are several different types of case-hardening steel, including carburizing steel, nitriding steel, and cyaniding steel.
Q: What are the different mechanical properties of special steel?
Special steels exhibit a diverse array of mechanical characteristics that render them distinctive and well-suited for specific uses. Among the noteworthy mechanical properties of special steel are its exceptional strength, impressive toughness, commendable wear resistance, and superior corrosion resistance. Of all these properties, high strength emerges as a particularly crucial attribute of special steel. This inherent strength enables the material to withstand substantial loads and stress without succumbing to deformation or failure. As a result, special steel finds application in areas where the preservation of structural integrity and durability holds paramount importance, such as in the construction of buildings, bridges, and machinery. Another significant mechanical property of special steel lies in its toughness. This quality refers to the material's ability to absorb energy and withstand fracture when subjected to impact or sudden loads. Special steels possessing high toughness become indispensable in applications involving dynamic and high-impact forces, such as the fabrication of tools, gears, and machinery components. Wear resistance constitutes yet another critical mechanical property of special steel. It denotes the material's capacity to endure damage and deterioration caused by friction, abrasion, or erosion. Special steel boasting good wear resistance frequently finds employment in scenarios where it will be exposed to harsh conditions or repetitive mechanical actions, as witnessed in the manufacturing of cutting tools, dies, and molds. Of equal importance is the superior corrosion resistance offered by special steel. This mechanical property proves invaluable, particularly in environments where exposure to moisture, chemicals, or extreme temperatures looms likely. Special steels endowed with high corrosion resistance can withstand the adverse effects of oxidation, rust, and chemical reactions, rendering them eminently suitable for deployment in industries such as marine, chemical, and oil and gas. In conclusion, special steels possess a diverse range of mechanical properties that distinguish them from conventional steels. High strength, remarkable toughness, commendable wear resistance, and superior corrosion resistance represent a few of these key mechanical properties, rendering special steel the preferred choice for numerous industrial applications.
Q: What are the factors that affect the fatigue strength of special steel?
The factors that affect the fatigue strength of special steel include the composition of the steel, the heat treatment process used, the presence of impurities or defects, the surface finish, the loading conditions, and the operating environment.
Q: How is special steel used in the production of aircraft landing gear?
Due to its outstanding mechanical properties and durability, special steel is extensively utilized in the manufacturing of aircraft landing gear. The landing gear, a critical component responsible for supporting the weight of an aircraft during takeoff, landing, and ground operations, must endure tremendous forces, impact loads, and harsh environmental conditions. Special steel, including high-strength low-alloy (HSLA) steel or alloy steel, is carefully chosen for its remarkable strength-to-weight ratio, high resistance to fatigue, and excellent ability to resist corrosion. These characteristics are essential in ensuring that the landing gear can withstand the extreme forces and stresses encountered during aircraft operations. The utilization of special steel in the production of landing gear offers multiple advantages. Firstly, it enables the landing gear to be lighter in weight, contributing to an overall reduction in the aircraft's weight. This results in improved fuel efficiency and increased capacity for carrying cargo, which are crucial factors in enhancing the performance of modern aircraft and reducing operating costs. Secondly, the high fatigue resistance of special steel ensures that the landing gear can endure repeated loading cycles without experiencing significant degradation in performance. This is of utmost importance since the landing gear is subjected to substantial stress during each landing and takeoff. It must be capable of withstanding these forces over a long operational lifespan. Furthermore, the excellent corrosion resistance properties of special steel guarantee that the landing gear remains protected from environmental elements such as moisture, salt, and other corrosive substances. Corrosion can weaken the structure of the landing gear, compromising its integrity and safety. Therefore, the use of special steel helps to ensure the longevity and reliability of the landing gear, reducing the need for maintenance and associated costs. To summarize, special steel plays a vital role in the manufacturing of aircraft landing gear due to its exceptional strength, fatigue resistance, and corrosion resistance. Its incorporation allows for the production of lighter and more durable landing gear, resulting in improved aircraft performance, enhanced efficiency, and increased safety.
Q: What are the properties of magnetic stainless steel?
Magnetic stainless steel is a type of stainless steel that exhibits magnetic properties due to its high iron content. It possesses good corrosion resistance, durability, and high strength, making it suitable for various applications. Additionally, it is easily formable and weldable, allowing for versatility in manufacturing processes.
Q: How does special steel contribute to the aerospace defense industry?
Special steel contributes to the aerospace defense industry by offering exceptional strength, durability, and corrosion resistance. It is used in the manufacturing of critical components, such as engine parts, landing gears, and structural elements, ensuring the safety and reliability of aircraft and defense systems. The high-performance properties of special steel enable the production of lighter aircraft, improving fuel efficiency and overall performance. Additionally, its ability to withstand extreme conditions and maintain structural integrity makes it crucial for military applications, including missile systems and armored vehicles.
Q: How is special steel recycled or disposed of?
Special steel, also known as alloy steel, is a valuable and highly sought-after material due to its unique properties and applications. When it comes to recycling or disposing of special steel, several methods can be employed depending on the condition and quality of the material. Recycling is the preferred and most common method for dealing with special steel. The recycling process involves collecting, sorting, and melting down the steel scrap to be reused in the production of new steel products. This process helps conserve natural resources, reduce energy consumption, and minimize waste generation. The first step in recycling special steel is the collection of scrap or end-of-life products that contain this material. These sources can include discarded machinery, automotive parts, construction materials, and even old appliances. Once collected, the steel is sorted and separated from other materials, such as plastic, rubber, or non-ferrous metals, using various techniques like magnetic separation, eddy current separation, or manual sorting. After sorting, the steel scrap is sent to a specialized recycling facility, commonly known as a steel mill or foundry. Here, the scrap is melted down in large furnaces at extremely high temperatures. During this process, impurities and contaminants are removed, and alloying elements can be added to achieve the desired composition and properties of the steel. Once the steel has been melted and purified, it is cast into various forms such as ingots, billets, or slabs, which can then be used to manufacture new steel products. These products may include pipes, bars, plates, or even new machine parts, depending on the specific requirements of the industry. As for disposal, special steel should be considered a valuable resource and not simply thrown away as waste. However, in cases where the steel is damaged beyond repair or contains hazardous materials, proper disposal methods must be followed. This typically involves consulting with specialized waste management companies that can handle the safe and environmentally friendly disposal of such materials. In conclusion, special steel is primarily recycled due to its high value and the various benefits associated with recycling. Through the collection, sorting, and melting processes, special steel can be transformed into new products while conserving resources and minimizing waste. Proper disposal methods are only necessary in exceptional cases where recycling is not feasible or when dealing with damaged or hazardous materials.
Q: What are the different casting grades of special steel?
Special steel is a classification of steel that is specifically designed to possess certain exceptional properties, making it suitable for specialized applications. Within the realm of special steel, there are several different casting grades available, each with its own unique characteristics and applications. One common casting grade of special steel is known as stainless steel. This grade contains a high percentage of chromium, which gives it excellent corrosion resistance properties. Stainless steel is widely used in applications where resistance to oxidation, acids, and other corrosive elements is critical, such as in the production of kitchen utensils, medical instruments, and chemical processing equipment. Another casting grade of special steel is tool steel. This grade is specifically formulated to exhibit exceptional hardness, wear resistance, and toughness. Tool steel is commonly used in the manufacturing of cutting tools, dies, molds, and other tools that require high strength and durability. High-speed steel is another important casting grade of special steel. This grade is known for its exceptional heat resistance and ability to maintain its hardness even at high temperatures. High-speed steel is widely used in the production of cutting tools such as drills, taps, and milling cutters, where the material is subjected to high temperatures generated by the cutting process. Furthermore, there are casting grades of special steel that are specifically designed for use in extreme temperature environments. These grades, such as heat-resistant steel, are formulated to maintain their strength and integrity even at elevated temperatures. Heat-resistant steel is commonly used in applications such as furnace components, exhaust systems, and gas turbines. In conclusion, the different casting grades of special steel offer a wide range of properties and applications. Stainless steel provides excellent corrosion resistance, tool steel offers exceptional hardness and toughness, high-speed steel is known for its heat resistance, and heat-resistant steel is designed to withstand extreme temperatures. These grades of special steel play a crucial role in various industries where exceptional properties are required for specific applications.
Q: What are the applications of tool steel?
Tool steel has numerous applications in various industries. Some common applications include the manufacturing of cutting tools such as drills, saw blades, and milling cutters. It is also used in the production of dies and punches for metal forming processes. Additionally, tool steel finds applications in the automotive industry for the production of engine components, gears, and shafts. It is also used in the construction industry for manufacturing tools and equipment for cutting, drilling, and shaping materials like wood and concrete. Overall, tool steel is valued for its high hardness, wear resistance, and ability to withstand high temperatures, making it ideal for applications that require durability and precision.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords