• Special Steel GB 65Mn Spring Steel Plate System 1
  • Special Steel GB 65Mn Spring Steel Plate System 2
  • Special Steel GB 65Mn Spring Steel Plate System 3
Special Steel GB 65Mn Spring Steel Plate

Special Steel GB 65Mn Spring Steel Plate

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
UL,ISO,SGS,BV,IBR,RoHS,CE,API,BSI

Product information:

GB, YB

JIS

DIN VDEh(W-Nr.)

ASTM

AISI

SAE

BS

NF

65


C67 (1.0761)

CK67 (1.1231)

1064,

1065

1064,

1065

1064,

1065

080A67

XC65

70


C67 (1.0761)

CK67 (1.1231)

1070

1070

1070

070A72

XC70

75


C75 (1.0773)

1074

1074

1074

070A78

XC70,

XC80

85

SUP3


1084

1084

1084

080A86


65Mn



1566


1566

-1066



55Si2Mn

SUP6

55Si7(1.0904)

9255

9255

9255

250A53

55S6,

56S7

60Si2Mn

SUP7

65Si7(1.0906),

66Si7(1.5028),

60SiCr7(1.0961)

9260

9260

9260

250A58,

250A61

61S7

60Si2CrA


67SiCr5(1.7103)

9254


9254



50CrMn

SUP9

55Cr3(1.7176)




527A60


50CrVA

SUP10

50CrV4(1.8159)

6150

6150

6150

735A50

50CV4

Product Show:

Special Steel GB 65Mn Spring Steel Plate

Workshop Show:

Special Steel GB 65Mn Spring Steel Plate

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

 

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                           2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q: How does special steel contribute to the heavy equipment industry?
Special steel contributes to the heavy equipment industry by offering enhanced strength, durability, and resistance to wear and tear. It enables the production of high-performance components and parts, such as gears, axles, and blades, that can withstand heavy loads, extreme temperatures, and harsh environments. The use of special steel in heavy equipment ensures improved safety, increased productivity, and longer service life, making it a critical material for the industry.
Q: How does special steel perform in extreme heat conditions?
Special steel is specifically engineered to excel in situations with intense heat. It showcases remarkable endurance against thermal fatigue, oxidation, and creep, rendering it ideal for applications that involve exposure to extreme heat. The distinctive composition and processing techniques employed in the production of special steel enable it to maintain its mechanical properties and structural integrity even when subjected to elevated temperatures. One of the primary attributes of special steel is its elevated melting point, which prevents it from easily melting or deforming under extreme heat. This characteristic holds significant importance in industries like aerospace, power generation, and automotive, where components must endure high temperatures while retaining their shape and functionality. Moreover, special steel possesses exceptional heat resistance, allowing it to effectively withstand and dissipate heat without compromising its strength or becoming brittle. This quality ensures that the steel remains durable and dependable even when exposed to prolonged periods of high temperatures. Additionally, special steel demonstrates exceptional resistance to oxidation, forming a protective layer on its surface that shields it from corrosion or degradation when exposed to oxygen at high temperatures. This resistance to oxidation enables special steel to sustain its performance and structural integrity over extended periods, making it highly suitable for applications in extreme heat conditions. In conclusion, special steel excels in extreme heat conditions due to its elevated melting point, heat resistance, and oxidation resistance. Its ability to withstand thermal fatigue, oxidation, and creep establishes it as a reliable and durable option for applications requiring superior performance in high-temperature environments.
Q: What are the different surface hardening techniques for special steel?
There are several surface hardening techniques for special steel, including carburizing, nitriding, induction hardening, flame hardening, and laser hardening.
Q: How does special steel contribute to the construction machinery industry?
Special steel plays a crucial role in the construction machinery industry by providing high-strength and durable components. These components are essential for heavy-duty applications in construction machinery, such as excavators, bulldozers, cranes, and loaders. One of the key contributions of special steel to the construction machinery industry is its ability to withstand extreme stress and load-bearing requirements. Construction machinery often operates under severe conditions, including heavy loads, vibrations, and impacts. Special steel, with its excellent mechanical properties, can resist these conditions and maintain its structural integrity, ensuring the safety and reliability of the equipment. Moreover, special steel is often used in critical components of construction machinery, such as booms, buckets, tracks, and gears. These components are subjected to intense wear and tear due to constant use in harsh environments. Special steel, engineered with enhanced hardness and wear resistance, helps extend the lifespan of these components, reducing maintenance costs and downtime. Additionally, special steel provides superior corrosion resistance, which is vital for construction machinery used in humid or corrosive environments. By preventing rust and decay, special steel helps maintain the equipment's performance and longevity, ultimately increasing productivity and efficiency in construction projects. Furthermore, special steel enables the construction machinery industry to achieve innovative designs and advanced functionalities. Its versatility allows for the creation of complex shapes and precise tolerances, which are essential for optimizing the performance and efficiency of machinery. Special steel also enables the incorporation of advanced technologies, such as sensors and automation, enhancing the accuracy and productivity of construction equipment. In summary, special steel contributes significantly to the construction machinery industry through its ability to withstand extreme conditions, provide superior wear resistance and corrosion protection, and enable innovative designs. By utilizing special steel in the manufacturing process, construction machinery manufacturers can ensure the durability, safety, and efficiency of their equipment, ultimately benefiting the construction industry as a whole.
Q: How does special steel contribute to reducing product lead times?
Special steel contributes to reducing product lead times by offering unique properties such as high strength, durability, and corrosion resistance. These properties enable manufacturers to produce components and parts with greater efficiency and accuracy. By using special steel, production processes can be streamlined, leading to faster manufacturing cycles and reduced lead times. Additionally, the superior performance of special steel allows for enhanced tool life and reduced maintenance, resulting in increased productivity and shorter production timelines.
Q: How does special steel contribute to the pharmaceutical industry?
Special steel plays a crucial role in the pharmaceutical industry by offering exceptional strength, corrosion resistance, and durability. It is used in the manufacturing of various equipment and components such as storage tanks, reactors, piping systems, and precision instruments. The unique properties of special steel ensure the integrity and purity of pharmaceutical products, prevent contamination, and enable efficient and safe production processes.
Q: What are the requirements for special steel used in battery technology?
To ensure optimal performance and safety, special steel utilized in battery technology must fulfill several requirements. First and foremost, it is imperative that the steel exhibits high corrosion resistance. This is crucial due to the presence of corrosive electrolytes within batteries that can gradually deteriorate the steel. Special steel must possess exceptional resistance to corrosion in order to prevent any chemical reactions that may compromise the battery's integrity and lifespan. Additionally, the steel must possess good mechanical strength to withstand the internal pressures and external forces that batteries encounter during operation and handling. It should be capable of resisting deformation and maintaining its structural integrity, even under high-stress conditions. Furthermore, it is desirable for the special steel to have high thermal conductivity. This is essential for efficient heat dissipation, as overheating can diminish battery performance and potentially lead to safety hazards. Steel with excellent thermal conductivity facilitates effective heat transfer, ensuring that the battery can function within safe temperature limits. Moreover, the steel should exhibit low electrical resistivity to minimize energy losses resulting from electrical resistance. This guarantees efficient energy transfer within the battery and reduces power dissipation, ultimately enhancing overall battery efficiency. In addition, compatibility with other battery materials, such as electrodes, electrolytes, and separators, is crucial. Ensuring compatibility prevents any chemical reactions or detrimental interactions that may jeopardize the battery's performance or lifespan. Finally, in line with the growing emphasis on environmental sustainability, it is increasingly important for special steel used in batteries to be produced using environmentally friendly methods. This entails minimizing the carbon footprint and reducing the consumption of scarce resources. To summarize, special steel utilized in battery technology must possess high corrosion resistance, mechanical strength, thermal conductivity, low electrical resistivity, compatibility with other battery materials, and environmental sustainability. These attributes are necessary to ensure optimal performance and safety in batteries.
Q: How are cobalt-based alloys used in dental applications?
Cobalt-based alloys are used in dental applications due to their unique properties such as high strength, corrosion resistance, and biocompatibility. They are commonly used in dental prosthesis, crowns, and bridges because they can withstand the harsh oral environment and provide long-term durability. Additionally, these alloys allow for precise and accurate fitting, ensuring optimal functionality and aesthetic appeal in dental restorations.
Q: How is special steel used in the defense supply chain?
Special steel is used in the defense supply chain for various applications such as manufacturing armored vehicles, military aircraft, naval vessels, and weapons systems. It offers exceptional strength, durability, and resistance to extreme conditions, enhancing the overall performance and protection of defense equipment. Additionally, special steel is utilized in the production of critical components like missile guidance systems, tank tracks, and ballistic plates, ensuring the reliability and effectiveness of defense systems.
Q: What are the different corrosion-resistant coatings for special steel?
Various corrosion-resistant coatings are available for special steel, each possessing unique properties and advantages. Some commonly used coatings include: 1. Zinc Coating: Galvanizing and other zinc coatings are widely employed to safeguard special steel against corrosion. The zinc layer acts as a sacrificial barrier, preventing corrosive elements from coming into contact with the steel. 2. Epoxy Coating: Due to their exceptional adhesion, chemical resistance, and durability, epoxy coatings are a popular choice for corrosion protection. They create a robust barrier that shields special steel from moisture, chemicals, and other corrosive agents. 3. Polyurethane Coating: In harsh environments where special steel is exposed to extreme conditions, such as offshore or marine applications, polyurethane coatings offer exceptional resistance against abrasion, chemicals, and weathering. 4. Ceramic Coating: Ceramic coatings provide outstanding corrosion protection and high-temperature resistance. They are frequently used in industries like aerospace and automotive, where special steel must withstand extreme temperatures and corrosive environments. 5. Metal Coating: Nickel or chromium coatings are frequently applied to special steel to enhance its corrosion resistance. These coatings establish a protective layer that acts as a physical barrier, preventing corrosion. 6. Powder Coating: Powder coatings are electrostatically applied and then cured under heat, resulting in a hard and durable protective layer. They offer excellent corrosion resistance and can be customized in terms of color and texture. Choosing the appropriate corrosion-resistant coating for special steel is crucial and should be based on specific requirements and the environment it will be exposed to. Factors such as temperature, exposure to chemicals or moisture, and desired coating lifespan should all be considered when selecting the suitable coating.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords