Special Steel 65Mn Hot Rolled Spring Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Product information:
Description of goods: | |
Standard | JIS/DIN/ASTM/SUS/AISI/EN/GB...... |
Material | 201/202/216/304/316/309S/310/410/430...... |
Width | 600-3300mm |
Thickness | 2-120mm |
Length | 1000-6000mm, or as the clients' requests |
Technology | Hot rolled |
Tolerance | Control with in the standard |
Advantages | 1.Short delivery time |
2.Quality assurance | |
3.Competitive price | |
4.Superior Service | |
Packing: | |
1. Export sea worthy package + water proof paper + wooden pallet 2. Max Loading 26.5mt for each 20Gp container 3. Safe loading and fixing Professional Teams 4. Professional shipping line |
Product Show:
Workshop Show:
Shipping
1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;
2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;
3. Customers specifying freight forwarders or negotiable shipping methods!
Delivery Time: 3-7 days for samples; 5-25 days for batch goods.
Payment Terms
1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.
2.MOQ: 1pcs
3.Warranty : 3 years
4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)
2)as customer's requirement
Why choose us?
(1) The leading exporter in China special steel industry.
(2) Large stocks for various sizes, fast delivery date.
(3) Good business relationship with China famous factories.
(4) More than 7 years steel exporting experience.
(5) Good after-sales service guarantee.
- Q: How does special steel perform in power generation applications?
- Special steel is highly regarded in power generation applications due to its exceptional strength, resistance to corrosion, and ability to withstand high temperatures. These qualities make it ideal for the construction of critical components such as turbine blades, steam generators, and boiler tubes. Special steel's superior performance ensures efficient and reliable power generation, contributing to increased productivity and longevity of power plants.
- Q: What is the role of special steel in the defense industry?
- Special steel plays a critical role in the defense industry due to its unique properties and capabilities. One of the primary functions of special steel in defense is to provide strength and durability to various components and structures of military equipment, such as tanks, armored vehicles, naval vessels, and aircraft. These steels are designed to withstand extreme conditions, including high impact and ballistic resistance, making them essential for ensuring the safety and protection of military personnel. Another significant role of special steel in the defense industry is its contribution to the production of cutting-edge weaponry. Special steel alloys are used to manufacture firearms, missiles, and artillery systems, providing the necessary strength, hardness, and corrosion resistance required for such applications. These steels allow for the precise manufacturing of complex weapon systems, ultimately enhancing their performance, accuracy, and reliability. Moreover, special steel also plays a vital role in the defense industry by enabling the development of advanced communication and electronics technologies. Steel alloys with specific magnetic properties are utilized in the production of radar systems, satellite components, and other electronic devices critical for military surveillance, intelligence, and communication purposes. These steels enable the efficient transmission and reception of signals, enhancing the overall capabilities of defense systems. In summary, special steel is indispensable in the defense industry due to its strength, durability, and unique properties. It provides the necessary foundation for the construction of military equipment, enhances the performance of weapons, and enables the development of advanced communication and electronics technologies. By utilizing special steel, the defense industry can ensure the safety, effectiveness, and technological superiority of military operations.
- Q: What are the different methods of surface lapping for special steel?
- There are several different methods of surface lapping for special steel. These methods are used to achieve a high level of flatness and smoothness on the surface of the steel. One common method is called free abrasive lapping. In this method, a slurry containing abrasive particles is used to polish the surface of the steel. The slurry is typically applied to a rotating lap plate, which is then pressed against the steel surface. The abrasive particles remove material from the surface, resulting in a smoother and flatter surface. Another method is called fixed abrasive lapping. In this method, a rigid lap plate with abrasive particles embedded in it is used to polish the steel surface. The lap plate is typically made of a harder material than the steel being lapped. As the lap plate rotates and is pressed against the steel surface, the embedded abrasive particles remove material, resulting in a smoother surface. Chemical lapping is another method that can be used for special steel. In this method, a chemical solution is applied to the steel surface. The chemical solution reacts with the surface of the steel, dissolving and removing a thin layer of material. This method is often used when a high level of flatness is required. Ultrasonic lapping is a method that uses ultrasonic vibrations to enhance the lapping process. In this method, the steel surface is placed in contact with a bath of abrasive particles and a liquid medium. Ultrasonic vibrations are then applied to the liquid medium, causing the abrasive particles to vibrate and remove material from the surface of the steel. This method can be particularly effective for lapping hard and brittle materials. Overall, the different methods of surface lapping for special steel offer various approaches to achieve the desired level of flatness and smoothness. The selection of the method depends on factors such as the type of steel, the desired surface finish, and the specific requirements of the application.
- Q: What are the main factors affecting the hardness of special steel?
- The hardness of special steel is influenced by various factors. Let's explore some of the key ones: 1. Carbon content plays a vital role in determining the hardness of steel. The addition of carbon, known as a hardening element, enhances the strength and hardness. Generally, higher carbon content leads to increased hardness. 2. The presence of alloying elements like chromium, manganese, nickel, and tungsten also impacts the hardness of special steel. These elements interact with the steel, forming compounds and solid solutions that enhance hardness and strength. 3. The hardness of steel is significantly affected by the heat treatment process. This involves subjecting the steel to specific heating and cooling cycles. Quenching, a rapid cooling process, transforms the microstructure of the steel, resulting in increased hardness. On the other hand, tempering reduces hardness while improving toughness. 4. The crystal structure of the steel can also influence its hardness. For instance, during quenching, the formation of martensite, a hard and brittle structure, increases hardness. Alternatively, crystal structures like ferrite or pearlite may exhibit lower hardness. 5. The size of grains within the steel's microstructure can impact its hardness. Smaller grain sizes generally lead to higher hardness due to improved strength and limited dislocation movement within the material. 6. Work hardening, which occurs through processes like rolling or forging, can increase the hardness of steel. This phenomenon happens when dislocations in the crystal lattice become trapped and hinder further dislocation movement, resulting in increased hardness. 7. The presence of impurities or non-metallic inclusions in steel can affect its hardness. These impurities can act as stress concentrators, reducing the material's hardness. To achieve the desired hardness for specific applications, it is crucial to consider and carefully control these factors during the manufacturing process of special steel.
- Q: How is nitriding steel used in the production of tools and dies?
- Nitriding steel is used in the production of tools and dies through a process called nitriding. This involves introducing nitrogen into the surface of the steel, which forms a hard layer of nitrides, increasing the overall hardness, wear resistance, and corrosion resistance of the material. This enhanced surface hardness makes the tools and dies more durable and long-lasting, allowing them to withstand the high stresses and temperatures experienced during cutting, forming, and shaping processes. Additionally, nitriding steel can also improve the fatigue strength and reduce the friction of the tools and dies, enhancing their performance and efficiency in various industrial applications.
- Q: How does special steel contribute to improving product reliability?
- Special steel contributes to improving product reliability in several ways. Firstly, special steel is known for its exceptional strength and durability, making it less prone to wear and tear or structural failures. This enhanced strength ensures that products made with special steel can withstand heavy loads, extreme temperatures, and harsh working conditions, thereby increasing their reliability and lifespan. Additionally, special steel is often engineered to have superior resistance to corrosion, rust, and other forms of degradation, minimizing the risk of damage or malfunction due to environmental factors. Moreover, the precise composition and manufacturing processes used in special steel production enable tighter tolerances and improved dimensional accuracy, resulting in products that fit together more seamlessly and function with greater precision. Overall, the use of special steel in various industries helps to enhance product reliability, ensuring that customers can trust in the quality and performance of the end products they use.
- Q: What are the main factors affecting the impact toughness of special steel?
- The impact toughness of special steel, or any material for that matter, is influenced by various factors. Some of the main factors affecting the impact toughness of special steel are: 1. Composition: The chemical composition of the steel plays a significant role in determining its impact toughness. Elements such as carbon, manganese, silicon, nickel, and molybdenum can be added to enhance the toughness of the steel. Higher carbon content generally improves hardness but reduces toughness, while alloying elements like nickel and molybdenum can enhance toughness. 2. Heat treatment: The heat treatment process, including processes like quenching and tempering, can significantly affect the impact toughness of special steel. Proper heat treatment can refine the microstructure of the steel, making it more resistant to fractures and increasing its toughness. 3. Microstructure: The microstructure of the steel, including the size, shape, and distribution of its grains, greatly impacts its toughness. Fine-grained steels generally exhibit better toughness compared to coarse-grained ones. The presence of certain phases, such as martensite or bainite, can also affect the impact toughness. 4. Inclusions: The presence of non-metallic inclusions, such as sulfides, oxides, or carbides, in the steel can act as stress concentration points and reduce its impact toughness. High-quality special steels often undergo processes like vacuum degassing or electroslag remelting to minimize the presence of these inclusions. 5. Processing conditions: The manufacturing processes used to produce special steel can influence its impact toughness. Factors such as forging, rolling, or extrusion conditions, as well as the cooling rate during solidification, can affect the microstructure and, consequently, the toughness of the steel. 6. Temperature: The impact toughness of special steel also varies with temperature. Some steels exhibit good toughness at low temperatures, while others may have better performance at higher temperatures. The temperature at which the steel is used or tested is an important factor to consider when evaluating its impact toughness. It is worth noting that the impact toughness of special steel is often determined using standardized tests, such as the Charpy or Izod test, which involve subjecting a notched specimen to impact loading. These tests provide valuable information on the material's ability to absorb energy and resist fracture under impact conditions.
- Q: Can special steel be recycled?
- Yes, special steel can be recycled. Special steel, also known as alloy steel, is a type of steel that contains additional elements such as chromium, nickel, or molybdenum to enhance its properties. These additional elements do not hinder the recyclability of the steel. The recycling process for special steel is similar to that of regular steel. The steel is collected from various sources, such as scrap metal yards, demolition sites, or end-of-life products. It is then processed to remove impurities, sorted, and shredded into smaller pieces. The shredded steel is melted in a furnace to form molten steel, which is then cast into new products or used as raw material for manufacturing processes. Recycling special steel offers several benefits. Firstly, it helps conserve natural resources as it reduces the need for new steel production. Secondly, it reduces energy consumption and greenhouse gas emissions associated with steel manufacturing. Additionally, recycling steel helps decrease waste generation and promotes a circular economy by utilizing existing materials. Overall, special steel, like any other type of steel, can be recycled effectively, contributing to environmental sustainability and resource conservation.
- Q: How does special steel perform in automotive applications?
- Special steel performs exceptionally well in automotive applications due to its unique properties and characteristics. It offers superior strength, durability, and resistance to wear and corrosion, making it highly suitable for critical components such as engine parts, chassis, and suspension systems. Special steel also enables the production of lightweight designs, enhancing fuel efficiency and reducing emissions. Additionally, its high heat resistance and thermal conductivity contribute to improved performance and safety in extreme conditions. Overall, the use of special steel in automotive applications ensures enhanced reliability, performance, and longevity of vehicles.
- Q: How does special steel contribute to the automotive material recycling?
- Special steel contributes to automotive material recycling in several ways. Firstly, special steel is highly durable and strong, making it ideal for use in critical automotive components such as engine parts, chassis, and suspension systems. This durability ensures that these components have a longer lifespan, reducing the frequency of replacements and minimizing waste. Additionally, special steel is highly recyclable. It can be easily melted down and reused without losing its inherent properties. This makes it an excellent choice for automakers looking to incorporate recycled materials into their production processes. By utilizing recycled special steel, the automotive industry can reduce the demand for virgin raw materials, conserve energy, and decrease greenhouse gas emissions associated with mining and production. Moreover, special steel's high strength-to-weight ratio allows for the production of lighter vehicles, enhancing fuel efficiency and reducing carbon emissions during the vehicle's operational phase. This aspect of special steel contributes to the overall sustainability of the automotive industry and supports the goals of a circular economy by promoting resource efficiency and waste reduction. Overall, special steel plays a vital role in automotive material recycling by enabling durable and long-lasting components, promoting the use of recycled materials, and contributing to the development of more sustainable and environmentally friendly vehicles.
Send your message to us
Special Steel 65Mn Hot Rolled Spring Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords