• Special Steel 65Mn Hot Rolled Spring Steel System 1
  • Special Steel 65Mn Hot Rolled Spring Steel System 2
  • Special Steel 65Mn Hot Rolled Spring Steel System 3
Special Steel 65Mn Hot Rolled Spring Steel

Special Steel 65Mn Hot Rolled Spring Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
UL,ISO,SGS,BV,IBR,RoHS,CE,API,BSI

Product information:

Description of goods:

Standard

JIS/DIN/ASTM/SUS/AISI/EN/GB......

Material

201/202/216/304/316/309S/310/410/430......

Width

600-3300mm

Thickness

2-120mm

Length

1000-6000mm, or as the clients' requests

Technology

Hot rolled

Tolerance

Control with in the  standard

 Advantages

1.Short delivery time

2.Quality assurance

3.Competitive price

4.Superior Service

Packing:

1. Export sea worthy package + water proof paper + wooden pallet                         2. Max Loading 26.5mt for each 20Gp container                                                       3. Safe loading and fixing Professional Teams                                                         4. Professional shipping line

Product Show:

Special Steel 65Mn Hot Rolled Spring Steel


Workshop Show:

Special Steel 65Mn Hot Rolled Spring Steel

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

 

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                           2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q: How is high-temperature tool steel used in the production of hot work tools?
High-temperature tool steel is used in the production of hot work tools due to its exceptional heat resistance and strength properties. It can withstand the high temperatures generated during hot work processes such as forging, extrusion, and die casting, without losing its hardness or experiencing deformation. This steel is used to manufacture tooling components like dies, punches, and inserts, ensuring their longevity and performance in extreme heat conditions.
Q: How does special steel perform in high-temperature fatigue?
Special steel performs well in high-temperature fatigue due to its enhanced mechanical properties and resistance to thermal degradation. It exhibits excellent strength, toughness, and creep resistance, allowing it to withstand prolonged exposure to elevated temperatures without significant loss in performance. Additionally, special steel is designed to maintain its structural integrity and resist fatigue failure even under repeated cyclic loading, making it a reliable choice for high-temperature applications.
Q: What are the different methods of preventing hydrogen embrittlement in special steel?
Preventing hydrogen embrittlement in special steel can be achieved through various methods. Firstly, selecting the appropriate steel type that has a lower susceptibility to embrittlement is an effective preventive measure. Opting for steels with lower alloy content or different composition can be advantageous, as high strength and hardness can make steels more prone to embrittlement. Controlled heat treatment is another method that can reduce the risk of hydrogen embrittlement. Tempering and annealing at specific temperatures can relieve internal stresses and minimize the impact of hydrogen absorption. To prevent or reduce the amount of hydrogen in the steel, hydrogen mitigation techniques can be utilized. These techniques include preheating the steel before hydrogen exposure, implementing desorption methods like vacuum annealing to remove trapped hydrogen, and using hydrogen scavenger coatings or inhibitors to capture or neutralize hydrogen. Stress reduction is crucial in preventing hydrogen embrittlement. Implementing stress relief techniques such as shot peening or stress-relieving heat treatments can significantly reduce the potential for embrittlement. Proper handling and storage of the steel are also important. It is vital to protect the steel from hydrogen-rich environments during manufacturing, handling, or storage stages. This can be achieved through careful consideration of cleaning or pickling processes, appropriate packaging, and storage techniques such as using dry environments or protective coatings. Regular maintenance and inspection of steel components are essential to identify signs of hydrogen embrittlement at an early stage. This allows for timely repairs or replacements to prevent catastrophic failures. It is important to note that the specific methods employed to prevent hydrogen embrittlement may vary depending on the application, type of steel, and environmental conditions. Consulting with experts and adhering to industry standards and guidelines are crucial to ensure effective prevention of hydrogen embrittlement in special steel.
Q: Can special steel be used for tooling applications?
Yes, special steel can be used for tooling applications. Special steels, such as high-speed steels and tool steels, are specifically designed and manufactured to have superior properties for tooling purposes. These steels possess characteristics such as high hardness, wear resistance, toughness, and heat resistance, making them ideal for tooling applications where durability and performance are crucial.
Q: What are the different types of tool steel?
There are several different types of tool steel, including high-speed steel, cold work steel, hot work steel, and plastic mold steel. Each type of tool steel is specifically designed for different applications and has unique properties that make it suitable for specific tasks.
Q: How does special steel perform in automotive applications?
Due to its outstanding performance characteristics, special steel is frequently utilized in automotive applications. It boasts superior strength, durability, and resistance to wear and corrosion, making it an ideal option for a wide range of automotive components. In terms of strength, special steel surpasses regular steel with its higher tensile strength, enabling it to withstand heavy loads and impacts. This strength is crucial in automotive applications where components must endure extreme forces while maintaining their structural integrity. Additionally, special steel displays excellent fatigue resistance, ensuring longevity and reliability even in demanding conditions. Furthermore, special steel's exceptional durability allows it to withstand harsh environments, including extreme temperatures, chemicals, and moisture. This durability assists automotive components in maintaining their functionality and performance over an extended period. Another significant advantage of special steel in automotive applications lies in its resistance to wear and corrosion. Automotive components are constantly exposed to friction, abrasion, and corrosive substances. Special steel's high wear resistance allows these components to endure prolonged use without experiencing significant degradation. Moreover, its corrosion resistance protects against rust and other forms of deterioration, preventing premature component failure. Additionally, special steel can be easily shaped and formed into intricate designs, empowering automotive manufacturers to create complex components with precise specifications. The versatility and formability of special steel make it an excellent choice for various automotive applications, including engine parts, suspension systems, chassis components, and exhaust systems. Overall, special steel's exceptional strength, durability, resistance to wear and corrosion, and versatility contribute to its status as a highly sought-after material for automotive applications. Its performance characteristics enhance safety, reliability, and efficiency in vehicles, establishing special steel as an integral part of the automotive industry.
Q: What are the applications of tool steel?
Tool steel has a wide range of applications due to its high hardness, resistance to wear, and ability to retain sharp edges. It is commonly used in the manufacturing of cutting tools, dies, molds, and machine components that require high strength and durability. Additionally, tool steel finds its use in the automotive, aerospace, and construction industries, where its properties are crucial for efficient and precise operations.
Q: What are the different construction grades of special steel?
In various industries and applications, special steel with different construction grades is utilized. These grades are specifically engineered to offer superior strength, durability, and resistance to corrosion and other environmental factors. Some well-known construction grades of special steel include: 1. Mild Steel: This grade is widely used in construction and is considered the most basic. It has a low carbon content, making it easy to work with and weld. Mild steel is suitable for applications that require moderate strength and durability. 2. High-Strength Low-Alloy (HSLA) Steel: HSLA steel is a type of special steel that contains small amounts of alloying elements like copper, nickel, and vanadium. This grade provides higher strength and improved formability compared to mild steel. It is commonly used in structural applications where a higher strength-to-weight ratio is needed. 3. Weathering Steel: Also referred to as Cor-Ten steel, weathering steel is a special grade that develops a protective layer of rust when exposed to the elements. This layer acts as a barrier against further corrosion, making it ideal for outdoor structures. Weathering steel is commonly used in bridges, buildings, and other architectural applications. 4. Stainless Steel: Stainless steel is a corrosion-resistant alloy that contains at least 10.5% chromium. It offers exceptional resistance to corrosion, heat, and chemicals, making it suitable for a wide range of construction applications. Stainless steel is commonly used in building facades, roofing, and structural components. 5. Tool Steel: Tool steel is a special grade specifically designed for manufacturing tools, dies, and molds. It possesses high hardness, wear resistance, and toughness properties, making it suitable for applications that involve cutting, shaping, and forming materials. 6. Alloy Steel: Alloy steel is a special grade that incorporates additional alloying elements like manganese, silicon, nickel, and chromium. This grade provides enhanced strength, toughness, and wear resistance compared to carbon steel. Alloy steel finds common usage in machinery, equipment, and components subjected to high stress and wear. These examples highlight the various construction grades of special steel. Each grade possesses unique properties and is chosen based on the specific requirements of the application.
Q: How is special steel graded?
Special steel is graded based on various factors such as chemical composition, mechanical properties, and the intended application. It typically involves assessing the steel's alloying elements, heat treatment processes, and quality control measures to determine its grade and suitability for specific industrial purposes.
Q: What are the different methods for case hardening special steel?
There are several methods for case hardening special steel, including carburizing, nitriding, carbonitriding, and induction hardening. Carburizing involves heating the steel in a carbon-rich environment to allow carbon atoms to diffuse into the surface, creating a hardened outer layer. Nitriding, on the other hand, involves introducing nitrogen to the steel's surface, resulting in a hard and wear-resistant layer. Carbonitriding combines both carbon and nitrogen to create a hardened surface with improved wear and corrosion resistance. Lastly, induction hardening utilizes an electromagnetic field to heat and harden specific areas of the steel, providing localized hardness and strength.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords