Special Steel AISI 6150 SUP10 Spring Flat Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Product information:
SPRING STEEL
1. Steel grade: SUP7/61SiCr7, SUP9/55Cr3, SUP9A/60Cr3, SUP10/51CrV4 etc
2. Size:
A. Spring steel flat bar: Thickness: 5mm-30mm, Width: 50mm-150mm, Length: 4m-6m |
B. Spring steel round bar: dia: 6mm-250mm |
3. Techniques: hot rolled and heat treatment
4. Surface: plain and grooved
5. Packaging: packing for export standard
6. Delivery terms and time: FOB or CFR or CIF/according to QTY
7. Payment : By 30% T/T in advance and the balance is for irrevocable L/C at sight
8. Advantages: accurate tolerance, large inventories, full-size, fast delivery and good after-sale service
9.Application: automotive suspension springs
Product Show:
Workshop Show:
Shipping
1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;
2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;
3. Customers specifying freight forwarders or negotiable shipping methods!
Delivery Time: 3-7 days for samples; 5-25 days for batch goods.
Payment Terms
1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.
2.MOQ: 1pcs
3.Warranty : 3 years
4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)
2)as customer's requirement
Why choose us?
(1) The leading exporter in China special steel industry.
(2) Large stocks for various sizes, fast delivery date.
(3) Good business relationship with China famous factories.
(4) More than 7 years steel exporting experience.
(5) Good after-sales service guarantee.
- Q: Can special steel be used in the battery manufacturing industry?
- Yes, special steel can be used in the battery manufacturing industry. Special steel is often used in battery production for various purposes, such as in the construction of battery casings, terminals, and other components. Its high strength, durability, and resistance to corrosion make it suitable for ensuring the safety and longevity of batteries.
- Q: What are the common challenges in machining titanium alloys?
- Successful and efficient results in machining titanium alloys require addressing several common challenges. One primary challenge is the inherent strength and hardness of the material. Titanium alloys are renowned for their excellent strength-to-weight ratio, making them ideal for various applications. However, this same strength makes them difficult to machine. The high strength of titanium alloys increases the cutting forces needed during machining, resulting in faster tool wear and reduced tool life. This necessitates the use of robust cutting tools made from carbide or ceramic, capable of withstanding demanding conditions and maintaining cutting performance. Another challenge in machining titanium alloys is their poor thermal conductivity. This characteristic leads to rapid heat buildup during cutting, causing localized high temperatures. These high temperatures can cause thermal damage to both the cutting tool and the workpiece, reducing dimensional accuracy and surface finish. To overcome this challenge, implementing effective cooling and lubrication techniques, such as using coolant or high-pressure air, is crucial to dissipate heat and prevent overheating. Furthermore, machining titanium alloys often results in the generation of built-up edge (BUE). BUE refers to the accumulation of workpiece material on the cutting tool, leading to poor chip evacuation, increased cutting forces, and surface finish issues. To mitigate BUE formation, it is recommended to use appropriate cutting speeds and feed rates, as well as cutting fluids that aid in chip evacuation and prevent material adhesion on the tool. Additionally, titanium alloys react strongly with oxygen, causing the formation of a stubborn oxide layer on the surface during machining. This oxide layer can cause tool chipping and premature wear. To combat this, it is necessary to employ suitable cutting speeds and feeds that efficiently remove material while minimizing prolonged exposure to the reactive nature of titanium alloys. Lastly, the low thermal expansion coefficient of titanium alloys can result in workpiece distortion and dimensional inaccuracies. To address this challenge, it is important to ensure proper fixturing and clamping techniques that minimize workpiece movement during machining. In conclusion, machining titanium alloys presents challenges such as high cutting forces, poor thermal conductivity, built-up edge formation, reactive oxide layer, and workpiece distortion. These challenges can be overcome by using appropriate cutting tools, effective cooling and lubrication techniques, proper cutting parameters, and careful workpiece handling.
- Q: What are the different types of heat treatment processes used for special steel?
- There are several types of heat treatment processes used for special steel, including annealing, normalizing, quenching, tempering, and case hardening. These processes are used to modify the properties of the steel, such as improving its hardness, strength, and toughness, to meet specific application requirements.
- Q: What are the main characteristics of electrical steel forgings?
- Electrical applications greatly benefit from the numerous advantageous features possessed by electrical steel forgings. Firstly, their low core loss property minimizes energy loss as heat during the magnetic cycle, making them exceptionally suitable for devices like transformers, motors, and generators. Consequently, the overall efficiency and performance of these devices are significantly enhanced. Secondly, electrical steel forgings exhibit high magnetic permeability, enabling them to conduct magnetic flux with ease. This attribute facilitates effective magnetic induction and maximizes the strength of the magnetic field in electrical components. As a result, energy conversion and transmission are efficiently achieved. Moreover, electrical steel forgings possess low coercivity, indicating that they require minimal magnetic field strength for magnetization and demagnetization. This characteristic results in quicker and more precise magnetic switching in electrical devices, leading to improved performance and reduced energy losses. Additionally, electrical steel forgings possess high electrical resistivity, which effectively restricts the flow of electrical current and diminishes energy losses due to eddy currents. This attribute is particularly vital in applications where electrical steel forgings are subjected to rapidly changing magnetic fields, such as in power transformers. Lastly, to further enhance their electrical performance and prevent short circuits or electrical leakage, electrical steel forgings are often treated with surface insulation coatings or coatings with high electrical resistivity. In conclusion, electrical steel forgings offer a range of essential characteristics including low core loss, high magnetic permeability, low coercivity, high electrical resistivity, and the ability to be coated for insulation. These properties make them indispensable in various electrical applications, ensuring efficient energy conversion, reduced losses, and reliable performance.
- Q: What are the limitations of using special steel in high-stress applications?
- Using special steel in high-stress applications comes with several limitations. Firstly, the cost of special steel can be significantly higher compared to other materials, making it less feasible for projects or industries with budget constraints. Secondly, the availability and sourcing of special steel can be a challenge, leading to potential delays in production or construction timelines. This becomes problematic in high-stress applications where time is of the essence. In addition, special steel may have limitations in terms of its structural integrity. Although it is generally stronger and more resistant to wear and tear than regular steel, it still has load-bearing capacity limits. Therefore, in extremely high-stress applications, special steel may not be the most suitable choice. Moreover, working with special steel can be more difficult than working with other materials. It may require specialized equipment or techniques for cutting, welding, or shaping, thereby adding complexity and cost to the manufacturing process. Lastly, special steel may have limitations in terms of its corrosion resistance. While it is generally more resistant to corrosion compared to regular steel, it can still rust or degrade if not properly maintained or exposed to harsh environments. This is a concern in high-stress applications where the material's durability and longevity are crucial. Overall, while special steel offers many benefits in high-stress applications, it is important to carefully consider its limitations in terms of cost, availability, load-bearing capacity, workability, and corrosion resistance. These factors should be thoroughly evaluated to determine the most suitable material for a specific high-stress application.
- Q: How is special steel used in the textile industry?
- Special steel is commonly used in the textile industry for the production of various machinery and equipment such as needles, pins, and wire guides. These steel components are essential in processes like knitting, weaving, and sewing, as they provide durability, strength, and precision, ensuring smooth operation and quality output in textile manufacturing.
- Q: What are the main characteristics of structural steel?
- Structural steel is a widely used material in construction due to its exceptional properties and characteristics. The main characteristics of structural steel include: 1. Strength: Structural steel has a high strength-to-weight ratio, making it a durable and reliable material for various construction applications. It can withstand heavy loads and forces without losing its structural integrity. 2. Flexibility: Structural steel offers flexibility in design and construction. It can be easily fabricated into different shapes and sizes to meet specific project requirements. This flexibility allows architects and engineers to create unique and innovative structures. 3. Fire resistance: Steel has excellent fire-resistant properties. It is non-combustible, meaning it does not burn or contribute to the spread of fire. This makes structural steel a safe choice for buildings where fire protection is crucial, such as high-rise structures. 4. Sustainability: Structural steel is a sustainable material as it is highly recyclable. Steel can be reused or repurposed at the end of its lifespan, reducing waste and conserving natural resources. Additionally, steel structures can be designed to be energy-efficient, further contributing to sustainability. 5. Cost-effective: Structural steel offers a cost-effective solution for construction projects. It is readily available, making it more affordable compared to other construction materials. Its strength and durability also result in reduced maintenance and repair costs over the long term. 6. Speed of construction: Steel structures can be fabricated off-site and then quickly erected on-site, leading to faster construction timelines. This reduces project duration and costs, making structural steel an ideal choice for time-sensitive projects. 7. Design versatility: Structural steel allows for a wide range of architectural designs. Its strength and flexibility enable the creation of large, open spaces with minimal support columns, providing architects with design freedom. This versatility makes steel an attractive option for various building types, including commercial, industrial, and institutional structures. In summary, the main characteristics of structural steel include its strength, flexibility, fire resistance, sustainability, cost-effectiveness, speed of construction, and design versatility. These qualities make it a preferred choice for construction projects worldwide.
- Q: Can special steel be used for jewelry?
- Yes, special steel can be used for jewelry. Special steel, such as stainless steel or titanium, is often used for making contemporary and modern jewelry pieces due to its durability, resistance to tarnish and corrosion, and affordability. It offers a unique and sleek aesthetic and can be crafted into various designs, making it a popular choice for jewelry makers and wearers alike.
- Q: What are the different surface cleaning methods used for special steel?
- There are several surface cleaning methods used for special steel, including mechanical cleaning, chemical cleaning, and electrochemical cleaning. Mechanical cleaning involves the use of abrasive tools or equipment to remove dirt, rust, or other contaminants from the surface. Chemical cleaning involves the use of chemicals, such as acids or solvents, to dissolve or remove contaminants. Electrochemical cleaning utilizes an electrical current to remove contaminants and improve the surface finish. Each method is chosen based on the specific requirements and condition of the special steel being cleaned.
- Q: How is high-speed tool steel used in the manufacturing of drills and taps?
- High-speed tool steel is used in the manufacturing of drills and taps because of its exceptional hardness, wear resistance, and heat resistance properties. This type of steel allows drills and taps to withstand high temperatures and friction, ensuring their durability and longevity. Additionally, high-speed tool steel enables these cutting tools to maintain their sharpness for longer periods, resulting in increased efficiency and precision during drilling and tapping operations.
Send your message to us
Special Steel AISI 6150 SUP10 Spring Flat Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords