Q235/3SP 140MM Blast Furnace Hot Rolled Steel Billet
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 30000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Description of Q235/3SP 140MM Blast Furnace Hot Rolled Steel Billet
Our hot dip galvanised steels consist of a steel substrate with a metallic zinc coating applied by means of a continuous hot dip galvanising process. Metallic zinc coatings are available in steel grades ranging from steel for bending and deep drawing applications, to structural steels and high yield strength steels.
A glossy surface finish obtained under specific skin-pass conditions (either non-skin-passed or skin- passed with smooth cylinders to obtain low roughness) can be provided if required at time of enquiry.
Advantage of Q235/3SP 140MM Blast Furnace Hot Rolled Steel Billet
Uncoated CR steel sheet With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.
Galvanized steel sheet(include HDG and EG)
With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.
Precoated steel sheet With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.
Applications of Q235/3SP 140MM Blast Furnace Hot Rolled Steel Billet
Our hot dip galvanised steels can be used in a very wide range of applications for industrial markets, both indoors and outdoors. Some of the most common applications are:
Building: wide sections for roofing and cladding, doors, door frames, metallic ceilings, partitions, structural members etc
Domestic appliances: all appliances for this sector (both white and brown goods) are manufactured with hot dip galvanised steels
Miscellaneous: electrical cabinets, aeraulic components, air conditioners, road signs etc
Zinc hot dip galvanised steel is suitable for contact with foodstuffs under certain conditions, as specified in European directive 89/109/EEC and French standard NF A 36-712-1. Please contact us for further information on this subject.
Specifications of Q235/3SP 140MM Blast Furnace Hot Rolled Steel Billet
Quality | Q/BQB 440-2003 | JIS G3312-1994 JIS G3321 | EN 10326-2004 | ASTM A653-02a |
EN 10327-2004 | (BASE PLATE) | |||
(BASE PLATE) | ||||
Commercial Steel | DC51D | SGCC SGLCC | DX51D+Z DX51D+AZ | CS Type A/B/C |
Forming Steel | St01,St02,St03 | SGCD1 SGLCD1 | FS Type A, Type B | |
Drawing | DC52D /DC53D | - | DX52D+Z DX52D+AZ | DDS TYPE A/C |
Steel | DX53D+Z DX53D+AZ | |||
Structural | S280GD (StE28) | SGC400 SGLC400 | S280D+Z DX54D+AZ | SS275 |
Steel | S350GD (StE34) | SGC440 SGLC440 | S350D+Z S350D+AZ | SS340 Class1 |
FAQ of Q235/3SP 85MM Blast Furnace Hot Rolled Steel Billet
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.
- Q: What are the different methods of steel billet cooling?
- The steel industry commonly employs various methods for cooling steel billets. These methods encompass air cooling, water cooling, and controlled cooling processes. Air cooling serves as one technique to cool steel billets. It entails allowing the billets to cool naturally in the surrounding air, without any additional cooling mechanisms. This method is straightforward and cost-effective, although it may result in slower cooling rates and less control over the cooling conditions compared to other methods. Water cooling represents another prevalent method for cooling steel billets. It involves immersing the billets in water or showering them with water to expedite the cooling process. Water cooling provides more efficient and controlled cooling rates compared to air cooling. It facilitates faster cooling and aids in achieving desired material properties, such as heightened hardness or improved microstructure. Controlled cooling processes constitute a more advanced approach to cooling steel billets. These processes involve meticulous control over temperature and cooling rates to attain specific material properties. One such process, known as quenching, encompasses rapidly cooling the billets in a controlled medium, such as oil or water, to achieve the desired hardness. Another controlled cooling process is referred to as annealing, which involves gradually cooling the billets to relieve internal stresses and enhance their machinability. Furthermore, specialized cooling techniques, such as spray cooling and water mist cooling, find application in specific industries or situations. These methods entail spraying a fine mist of water onto the billets to achieve rapid and uniform cooling. Overall, the selection of a cooling method hinges on several factors, including desired material properties, production requirements, and cost considerations. Different cooling methods offer distinct advantages and compromises, necessitating steel manufacturers to choose the most suitable approach for their specific needs.
- Q: Can steel billets be cast from recycled steel?
- Steel billets can be produced from recycled steel. Recycled steel, also called scrap steel, can be melted in either an electric arc furnace or a basic oxygen furnace to create molten steel. This molten steel can then be shaped into various forms, such as long rectangular or square metal bars known as steel billets. The steel industry commonly employs this method to cast steel billets from recycled steel due to the environmental and economic advantages it offers. By recycling steel, we reduce the necessity for raw materials and energy consumption typically required in the production of new steel. Moreover, the use of recycled steel minimizes waste and pollution associated with traditional steel manufacturing processes. Consequently, casting steel billets from recycled steel proves to be a sustainable and practical choice within the steel industry.
- Q: What are the safety measures involved in handling steel billets?
- When handling steel billets, there are several important safety measures that should be followed to ensure the well-being of workers and prevent accidents. 1. Personal Protective Equipment (PPE): It is essential for workers to wear appropriate PPE, such as safety goggles, gloves, steel-toed boots, and helmets, to protect themselves from potential hazards. This equipment provides protection against sharp edges, flying debris, and falling objects. 2. Training: Proper training is crucial for workers involved in handling steel billets. They should be trained in safe lifting techniques, handling procedures, and the use of equipment like cranes or forklifts. This knowledge will help minimize the risk of musculoskeletal injuries and accidents caused by improper handling. 3. Equipment Inspection: Regular inspection of equipment, such as cranes, hoists, and lifting slings, is crucial to ensure their proper functioning. Any defects or malfunctions should be reported and repaired promptly to prevent accidents. 4. Secure Storage: Steel billets should be stored in a secure and organized manner to prevent them from falling or tipping over. Proper racking systems and storage areas should be used to ensure stability and prevent accidents due to falling objects. 5. Adequate Lighting: Good lighting is essential in the working area to ensure clear visibility and prevent accidents caused by tripping or colliding with objects. 6. Floor Conditions: The floor should be kept clean and free from hazards, such as oil spills or debris, that could cause slips, trips, or falls. Regular cleaning and maintenance are necessary to ensure a safe working environment. 7. Communication: Clear communication among workers involved in handling steel billets is crucial to prevent accidents. Signals, hand gestures, and use of radios or other communication devices can help coordinate movements and prevent collisions or accidents. 8. Emergency Preparedness: Adequate emergency preparedness measures should be in place, including fire extinguishers, first aid kits, and evacuation plans. Workers should be trained in emergency procedures to ensure a swift and safe response in case of an incident. By following these safety measures, risks associated with handling steel billets can be minimized, ensuring a safer work environment for all involved.
- Q: How are steel billets used in the production of automotive exhaust systems?
- Automotive exhaust systems rely heavily on steel billets as a vital element. These solid blocks of steel serve as the primary material for manufacturing various parts and components of the exhaust system. To begin the process, the steel billets are heated in a furnace to a specific temperature, which softens the steel and makes it malleable. Once heated, the billets are then molded and shaped into different components of the exhaust system, such as pipes, mufflers, and catalytic converters. The shaping process can be accomplished through hot rolling, cold rolling, or extrusion, depending on the desired shape and properties of the component. Following the shaping process, further treatment is carried out to enhance the strength and durability of the steel billets. This treatment may involve heat processes like quenching and tempering, which improve the steel's hardness, toughness, and resistance to corrosion. These treatments ensure that the exhaust system components can endure the harsh conditions they will encounter, including high temperatures and corrosive gases. Once the steel billets have been shaped and treated, they are assembled and welded together to form the final exhaust system. This involves joining the various components, such as pipes and mufflers, using welding techniques like arc welding or laser welding. These welding processes guarantee secure connections between the components, preventing any leaks or failures in the exhaust system. In summary, steel billets are of utmost importance in the production of automotive exhaust systems as they provide the necessary raw material for shaping and forming the various components. Their exceptional strength, durability, and resistance to high temperatures and corrosion make them an ideal choice for manufacturing exhaust systems capable of withstanding the demanding conditions associated with automotive use.
- Q: which companies are, and how the billet sales, how can we sell billet to ask for advice, thank you
- The main mold manufacturers, equipment manufacturers, military departments, measuring and cutting tools manufacturers.
- Q: How are steel billets used in the manufacturing of aerospace components?
- Steel billets serve as a crucial raw material in the production of aerospace components. These semi-finished steel products, shaped like squares or rectangular solids, undergo a series of processes to become the required parts. To begin with, the steel billets go through a heating process called "hot working." This involves subjecting the billets to high temperatures, typically around 1200-1300°C, to increase their malleability and facilitate shaping. The heated billets are then passed through rolling mills, where they gradually decrease in size and take on the desired forms, such as bars, rods, or sheets. Once the steel billets have been shaped accordingly, they undergo further processing techniques like forging, extrusion, or machining to create specific aerospace components. For instance, the billets can be forged or machined to manufacture critical parts like engine shafts, landing gear components, or structural supports. The utilization of steel billets in aerospace manufacturing presents several advantages. Steel is renowned for its high strength, durability, and excellent mechanical properties, making it an ideal material for aerospace applications. Steel components can endure extreme conditions, such as high temperatures and pressures, while resisting corrosion and fatigue, thereby ensuring the safety and reliability of aerospace systems. Furthermore, steel billets can be customized to meet the stringent requirements of aerospace components. By carefully controlling the composition, heat treatment, and manufacturing processes, steel billets can be tailored to exhibit specific properties, such as a high strength-to-weight ratio, exceptional heat resistance, or enhanced fatigue life. This customization guarantees that the resulting aerospace components meet the industry's demanding standards. In conclusion, steel billets play a vital role in the production of aerospace components. Through a series of heating, shaping, and processing techniques, steel billets are transformed into various forms that are then further processed to create critical aerospace parts. The utilization of steel as a material offers exceptional strength, durability, and customization possibilities, thereby ensuring the production of high-quality and reliable aerospace components.
- Q: How are steel billets used in the manufacturing of oil and gas pipelines?
- Steel billets are of utmost importance when it comes to the production of oil and gas pipelines. They serve as the primary material from which pipes are derived. Essentially, steel billets are partially finished forms of steel that are cast into specific shapes and sizes for further processing. In order to manufacture oil and gas pipelines, the initial step involves melting steel scrap and other alloys in a furnace to create molten steel. This liquid metal is then poured into molds or continuous casting machines to produce steel billets. These billets usually have a cylindrical shape and can vary in length and diameter depending on the desired specifications of the pipeline. After the steel billets have cooled down and solidified, they undergo various shaping processes, such as hot rolling or extrusion, to transform them into seamless or welded pipes. Hot rolling entails passing the billets through a series of rollers that apply pressure and heat in order to shape them into the desired pipe form. On the other hand, extrusion involves forcing the billets through a die to create the pipe shape. The resulting pipes then undergo further processing through techniques like heat treatment, machining, and coating to enhance their strength, durability, and resistance to corrosion. These processes ensure that the pipes can endure the harsh conditions and pressures encountered in the oil and gas industry. All in all, steel billets play a critical role in the production of oil and gas pipelines as they supply the starting material for creating the pipes. Their strength, versatility, and ability to withstand extreme conditions make them the ideal choice for constructing pipelines that transport oil and gas over long distances.
- Q: What are the different surface treatments for steel billets?
- Steel billets can undergo various surface treatments to enhance their performance and safeguard them against corrosion. Hot-dip galvanizing is a popular method, which involves immersing the billets in molten zinc to create a protective coating that acts as a barrier against moisture and corrosive elements. Electroplating offers another option, where a thin layer of metal like chromium or nickel is deposited onto the billet surface using an electric current. This not only provides corrosion resistance but also enhances the appearance of the billets. Painting or powder coating is a third approach, wherein a layer of paint or dry powder is applied to the billet surface. This forms a protective barrier, preventing moisture and corrosive substances from reaching the steel. Shot blasting or sandblasting can also be utilized for surface treatment. This technique involves propelling abrasive particles at high speeds onto the billet surface to eliminate impurities and scale, resulting in a clean and smooth finish. Lastly, chemical treatments like phosphating are available. Phosphating involves immersing the steel in a phosphoric acid solution, forming a protective phosphate coating that improves corrosion resistance and promotes paint adhesion. Ultimately, the choice of surface treatment for steel billets depends on the specific requirements of the application and the desired level of protection against corrosion and environmental factors.
- Q: What are the different methods of steel billet cutting?
- There are several common methods for cutting steel billets, including sawing, shearing, abrasive cutting, and flame/plasma cutting. Sawing involves using a high-speed circular saw blade to cut through the billet, while shearing involves using a guillotine-like tool to apply a shearing force and cut the billet. Abrasive cutting utilizes a high-speed abrasive wheel to grind through the steel, and flame or plasma cutting involves using a focused flame or plasma arc to melt and cut the billet. Each method has its own advantages and disadvantages depending on the specific requirements of the project.
- Q: What are the different surface treatments for rust prevention in steel billets?
- Steel billets have various options for preventing rust. The purpose of these treatments is to safeguard the steel's surface against corrosion caused by exposure to moisture or other corrosive substances. Some commonly used treatments are: 1. Hot-dip galvanizing: This process involves submerging the steel billets in molten zinc, which creates a protective layer on the surface. The zinc coating acts as a barrier, preventing contact between the steel and corrosive elements. 2. Electroplating: Here, a thin layer of corrosion-resistant metal like zinc, nickel, or chromium is deposited onto the steel billet surface using electricity. The electroplated layer provides a protective barrier against rust. 3. Paint coatings: Applying paint on the steel billet surface effectively prevents rust. The paint forms a protective barrier, blocking moisture and corrosive substances from reaching the steel. Usually, multiple layers of paint, including primer and topcoat, are applied for increased durability. 4. Powder coating: This method involves applying a dry powder, typically made of epoxy, polyester, or acrylic, onto the steel billet surface. The powder is electrostatically charged and sticks to the metal, forming a durable protective coating when heated. Powder coating offers excellent corrosion resistance. 5. Phosphating: Phosphating is a chemical treatment where a phosphate coating is applied to the steel surface. The phosphate layer enhances the steel's corrosion resistance and provides a good foundation for subsequent paint or powder coating. 6. VCI (Vapor Corrosion Inhibitor) packaging: This technique employs specialized packaging materials that release volatile corrosion inhibitors. These inhibitors create a protective environment around the steel billets, preventing rust during storage or transportation. It's important to consider factors like the steel's intended use, the environment it will be exposed to, and cost when choosing a surface treatment. Each method has its advantages and limitations, so it's crucial to select the most suitable treatment for effective rust prevention in steel billets.
Send your message to us
Q235/3SP 140MM Blast Furnace Hot Rolled Steel Billet
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 2000 m.t.
- Supply Capability:
- 30000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords