• Prime quality square alloy steel billet 165mm Q235 System 1
  • Prime quality square alloy steel billet 165mm Q235 System 2
  • Prime quality square alloy steel billet 165mm Q235 System 3
  • Prime quality square alloy steel billet 165mm Q235 System 4
  • Prime quality square alloy steel billet 165mm Q235 System 5
  • Prime quality square alloy steel billet 165mm Q235 System 6
Prime quality square alloy steel billet 165mm Q235

Prime quality square alloy steel billet 165mm Q235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Prime quality square alloy steel billet 165mm Q235

 Prime quality square alloy steel billet 165mm Q235

Description of Prime quality square alloy steel billet 165mm Q235 

1. Prepainted steel coil is coated with organic layer, which provides higher anti-corrosion property and a longer lifespan than that of galvanized or galvalume steel sheets. 

2. The base metals for prepainted steel coil consist of cold rolled, HDGI Steel, electro-galvanized and hot-dip alu-zinc coated steel. The finish coats of prepainted steel coil can be classified into groups as follows: polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc.

3. The production process has evolved from one-coating-and-one-baking to double-coating-and-double-baking, and even three-coating-and-three-baking.

4. The color of the prepainted steel coil has a very wide selection, like orange, cream-colored, dark sky blue, sea blue, bright red, brick red, ivory white, porcelain blue, etc.

5. The prepainted steel coils can also be classified into groups by their surface textures, namely regular prepainted sheets, embossed sheets and printed sheets.

 Prime quality square alloy steel billet 165mm Q235

 

Main Feature of Prime quality square alloy steel billet 165mm Q235

Uncoated CR steel sheet 

With the features of in line with the international highest standards in demension and shape, excellent surface finish and properties, the products are mainly used in home appliance and automobile industries.

Galvanized steel sheet(include HDG and EG)

With the features of good corrosion resistance, the products are mainly used in automobile, home appliance, electronics, building and machinery manufacture industries, etc.

Precoated steel sheet

With the features of enviromental protection and good processablility, long lasting surface durability, rich in colors, the products are maily used in building, home appliance and furniture industries, etc.

 

Applications of Prime quality square alloy steel billet 165mm Q235

Construction
Manufacture anticorrosion, industrial and civil architecture roof boarding, roof grille
Light industries
Home appliance's case, civil chimney, kitchen utensils
Auto industry
Corrosion resistant parts of cars
Agriculture
Food storage, meat and aquatic products' freezing and processing equipment
Commerce
Equipments to store and transport materials, and packing implements

  Prime quality square alloy steel billet 165mm Q235

 

Specifications of Prime quality square alloy steel billet 165mm Q235

Product

Prime quality square alloy steel billet 165mm Q235

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.6-3.0mm

Width

500-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

Z30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

1-25MT

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

  

FAQ of Prime quality square alloy steel billet 165mm Q235

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  Our delivery time about 15-20days for standard sizes, if you have other requirements like hardness, quanity and width ,it is about 20-40days. But don't worry we also try our best for the delivery time ,because time longer and our cost is higher.


 


Q: Are steel billets used in the production of electrical appliances?
No, steel billets are not typically used in the production of electrical appliances. Electrical appliances are usually made from materials like plastic, aluminum, or stainless steel.
Q: How do steel billets contribute to the manufacturing of automotive parts?
The manufacturing of automotive parts heavily relies on steel billets, as they serve as the primary raw material for various components. Steel billets possess excellent strength, durability, and malleability properties, making them indispensable for automotive manufacturers. To begin with, steel billets play a crucial role in the production of engine parts such as crankshafts, connecting rods, and camshafts. These components demand high strength and precision, which can be achieved by utilizing steel billets as the initial material. By heating, forging, and machining the billets, they are shaped into the desired form, ensuring the necessary strength and accuracy for optimal engine performance. Furthermore, suspension and chassis components also heavily rely on steel billets. Control arms, axles, and frame sections necessitate exceptional toughness and resistance to endure the constant stresses and strains experienced by vehicles. Steel billets provide the required mechanical properties to guarantee the safety and longevity of these vital automotive components. In addition, various transmission and drivetrain parts are manufactured using steel billets. Gears, shafts, and differential components require outstanding wear resistance, strength, and dimensional accuracy to ensure the efficiency and reliability of the vehicle's power transmission system. Through forging and machining, steel billets are transformed into these parts, meeting the rigorous standards set by the automotive industry. Moreover, steel billets contribute to the production of body and exterior components such as doors, hoods, fenders, and frames. These parts necessitate high strength, corrosion resistance, and the ability to be shaped into complex forms. Steel billets can be hot or cold rolled, pressed, stamped, or welded to produce these components, providing the necessary structural integrity and aesthetics for automotive bodies. In conclusion, the superior mechanical properties and versatility of steel billets make them vital in the manufacturing of automotive parts. They enable the production of high-quality, durable, and reliable components that meet the demanding requirements of the automotive industry. The use of steel billets ensures the safety, performance, and longevity of vehicles, contributing to the overall quality of the automotive manufacturing process.
Q: What are the different types of steel billet inspection techniques?
In the industry, various techniques are utilized for inspecting steel billets to ensure their quality and integrity before further processing or utilization in manufacturing. Some commonly employed inspection techniques comprise: 1. Visual Inspection: Inspectors visually examine the steel billets for surface defects like cracks, pits, or deformities, making it a quick and effective method for detecting obvious visual defects. 2. Dimensional Inspection: This technique involves measuring the dimensions of the steel billet using tools like Vernier calipers or micrometers, ensuring that the billets meet the required dimensional specifications. 3. Ultrasonic Testing: High-frequency sound waves are used in ultrasonic testing to detect internal defects or inconsistencies in the steel billets. This technique can identify defects like cracks, voids, or inclusions that may not be visible to the naked eye. 4. Magnetic Particle Inspection: By applying magnetic fields to the steel billets and utilizing iron particles or magnetic ink, this technique identifies surface and near-surface defects, particularly cracks or discontinuities. 5. Eddy Current Testing: Eddy current testing utilizes electromagnetic induction to detect surface defects and measure the conductivity or thickness of the steel billets. It is a non-destructive technique that can identify defects like cracks, corrosion, or variations in material thickness. 6. Radiographic Testing: X-rays or gamma rays are employed in this technique to inspect the internal structure of the steel billets, enabling the detection of defects like inclusions, voids, or improper internal structure. 7. Dye Penetrant Inspection: By applying a dye or fluorescent liquid to the steel billets, dye penetrant inspection detects surface defects. The dye seeps into cracks or discontinuities, and excess dye is wiped off, leaving only the dye trapped in the defects, which can be easily identified under UV light. These techniques are commonly used for inspecting steel billets, with each having its own advantages and limitations. The choice of technique depends on factors such as the type and size of the billets, the level of defect detection required, and budget constraints.
Q: What is the role of steel billets in the construction of power plants?
Steel billets play a crucial role in the construction of power plants. These billets are semi-finished steel products that are used as raw material in various processes, including the fabrication of structural components and equipment for power plants. One of the primary applications of steel billets in power plant construction is in the production of structural steel. Structural steel is used to build the framework of power plant structures, such as the main building, turbine halls, reactor buildings, and cooling towers. Steel billets are melted, refined, and cast into various shapes and sizes to create the necessary structural components, including beams, columns, and trusses. These components provide the necessary support and stability to the power plant infrastructure. Additionally, steel billets are also used in the manufacturing of equipment and machinery required for power generation. For instance, they are used to produce turbine rotors, generator frames, and condensers. These components are essential for the operation of power plants and contribute to the efficient conversion of energy. Moreover, steel billets are utilized in the construction of storage tanks, pipelines, and ducts within power plants. These structures are necessary for the storage and transportation of various fluids, such as water, steam, and fuel. Steel billets are transformed into sheets, plates, and tubes to fabricate these components, which are designed to withstand high pressures and temperatures. Furthermore, steel billets are highly durable and possess excellent mechanical properties, such as strength and toughness. These properties make them suitable for withstanding the harsh operating conditions and loads experienced in power plants. They can withstand high temperatures, corrosion, and stresses, ensuring the structural integrity and longevity of power plant infrastructure. In summary, steel billets are essential in the construction of power plants as they are used to produce structural components, equipment, and machinery. Their durability, strength, and versatility make them a preferred material in this industry. The use of steel billets ensures the reliability and safety of power plants, contributing to the generation of electricity for various industries and communities.
Q: 100Q235 steel can only be rolled from billets of Q235?Or a billet can be rolled into Q195~Q215 and other models of steel?Is there a detailed classification of billets? Do you have GB?
Billet classification of GB, it is convenient to check
Q: How are steel billets cut to size?
Steel billets are typically cut to size using various methods such as sawing, torch cutting, shearing, or using automated machines like bandsaws or plasma cutting machines.
Q: How do steel billets contribute to the construction industry?
Steel billets are a crucial component in the construction industry for several reasons. Firstly, they serve as the raw material for the production of various steel products used in construction, such as beams, columns, and reinforcement bars. These products provide structural support and integrity to buildings and infrastructure projects. Steel billets are also essential for the manufacturing of precast concrete elements, which are widely used in construction. Pre-stressed concrete beams, for example, are reinforced with steel billets to enhance their strength and durability. This allows for the construction of larger and more complex structures, such as bridges, stadiums, and high-rise buildings. Moreover, steel billets play a vital role in the fabrication of steel pipes and tubes, which are extensively used in the construction of water supply systems, sewage lines, and gas pipelines. These pipes offer a reliable and efficient means of transporting fluids and gases, ensuring the proper functioning of various infrastructure networks. In addition to their structural applications, steel billets also contribute to the construction industry through their recyclability. Steel is one of the most recycled materials globally, and steel billets can be melted down and reused multiple times without any loss in quality. This not only reduces the demand for virgin steel production but also minimizes environmental impact and waste generation. Overall, steel billets are indispensable in the construction industry due to their versatility, strength, and recyclability. They serve as the backbone for the production of various steel products and play a crucial role in the construction of durable and sustainable buildings and infrastructure projects.
Q: What are the advantages of using steel billets in the manufacturing process?
Using steel billets in the manufacturing process offers numerous benefits. Firstly, the controlled casting process used to produce steel billets ensures superior quality and consistent material. This consistency is essential in manufacturing applications that demand precise dimensions and mechanical properties. Secondly, steel billets possess remarkable strength and durability, making them suitable for a wide range of manufacturing purposes. Steel is renowned for its high tensile strength, enabling it to withstand heavy loads and impacts without any deformation or failure. As a result, steel billets are ideal for structural components and machinery parts that must endure high levels of stress. Moreover, steel billets can be easily shaped and formed into various sizes and shapes to meet specific design requirements. Manufacturers can achieve the desired shape by hot rolling, cold rolling, or forging the billets. This flexibility allows for the creation of intricate and complex parts with ease. Additionally, steel billets have exceptional resistance to heat and corrosion. This makes them highly suitable for applications involving high temperatures or exposure to harsh environments, such as automotive components, construction materials, and industrial machinery. Furthermore, steel billets are readily available and cost-effective compared to alternative materials. Steel is one of the most widely produced and recycled materials globally, ensuring a consistent supply and competitive prices. This availability and affordability make steel billets the preferred choice for many manufacturers. Lastly, steel billets are environmentally friendly. The recyclability of steel helps reduce energy consumption and greenhouse gas emissions during the manufacturing process. Choosing steel billets enables businesses to minimize their environmental impact and make sustainable choices. In conclusion, the advantages of using steel billets in the manufacturing process include their superior quality and consistency, exceptional strength and durability, versatility in shaping, resistance to heat and corrosion, availability and cost-effectiveness, and environmental sustainability.
Q: What is the typical yield strength of a steel billet?
The typical yield strength of a steel billet varies depending on the specific grade and composition of the steel. However, it is generally in the range of 250 to 500 megapascals (MPa).
Q: How are steel billets used in the manufacturing of hydraulic components?
Steel billets are commonly used in the manufacturing of hydraulic components as they serve as the raw material for shaping and forming various parts such as cylinders, pistons, and valves. These billets are heated and then subjected to various mechanical processes like forging, rolling, or extrusion to achieve the desired shape and size. The resulting hydraulic components made from steel billets offer high strength, durability, and resistance to pressure, making them suitable for use in hydraulic systems that require reliable and efficient operation.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords