Prime quality prepainted galvanized steel 740mm
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Construction building material galvanized color prepainted cold
rolled steel coil
Prepainted steel sheet is coated with organic layer, which provides higher anti-corrosion property and
a longer lifespan than that of galvanized steel sheets.
The base metals for prepainted steel sheet consist of cold-rolled, HDG electro-galvanized and hot-dip
Alu-zinc coated. The finish coats of prepainted steel sheets can be classified into groups as follows:
polyester, silicon modified polyesters, polyvinylidene fluoride, high-durability polyester, etc
Standard and Grade :
Pre-paint galvanized steel coil | ||||
ASTM A755M-03 | EN10169:2006 | JISG 3312-2012 | ||
Commercial quality | CS | DX51D+Z | CGCC | |
Structure steel | SS GRADE 230 | S220GD+Z | CGC340 | |
SS GRADE 255 | S250GD+Z | CGC400 | ||
SS GRADE 275 | S280GD+Z | CGC440 | ||
SS GRADE 340 | S320GD+Z | CGC490 | ||
SS GRADE550 | S350GD+Z | CGC570 | ||
S550GD+Z |
Application:
Outdoor | Roof, roof structure, surface sheet of balcony, frame of window, door of garage, rolled shutter door, booth, Persian blinds, cabana, etc |
Indoor | Door, isolater, frame of door, light steel structure of house, home electronic appliances, ect. |
Specifications
Commodity Name: Prepainted Galvanized Steel Coil
Standard: AISI, ASTM, DIN, GB, JIS
Grade: TDC52D+Z
Thickness 0.13-8.0mm
Width:600mm-1350mm
Zinc Coating:275g/m2
Polyester Coating Thickness:Top and Back coating thickness depend by Buyer Requirement.
Polyester Coating Type:2/2,1/2m,1/2.
Polyester Type: Polyester, silicone modified polyester, high durability polyester (HDP), polyvinylidene fluoride (PVDF)
Unit Roll Weight:5-20tons
Place of Origin Shanghai , China (Mainland)
Surface Treatment :Color Coated
Manufacture Progress:HRC-CRC-GALVANIZED-COLOR COATED
Application : Construction, electrical, transportation, steel plant, composite board plant, steel tile factory
Payment & Shipping Terms:T/T ,L/C, and FOB CHINA
Minimum Order Quantity: 25Tons
Packge Type: Moisture-proof paper inner,Steel outside,Bundle by steel rope.
Package in Container : Wood as a foot pad, wire rope reinforcement,PPGI steel coil tied together by steel rope.
- Q: How are steel billets used in the production of construction machinery?
- Construction machinery relies heavily on steel billets, which are essential in its production. These semi-finished steel products are shaped into different forms and sizes to fabricate the necessary components. After acquiring the steel billets, they undergo heating and are subsequently passed through rolling mills to attain the desired shapes. This hot rolling process enables the transformation of the billets into profiles like beams, channels, and angles, which are commonly utilized in machinery construction. The shaped steel components derived from these billets undergo further processing and fabrication to create various parts of construction machinery. These parts encompass base frames, chassis, booms, arms, buckets, and other structural elements. The utilization of steel billets in constructing machinery offers numerous advantages. Steel is renowned for its exceptional strength, durability, and resistance to wear and tear, making it an ideal material for heavy-duty machinery. Furthermore, steel is capable of withstanding severe weather conditions and heavy loads, ensuring the machinery's longevity and reliability. Moreover, steel billets are versatile and can be customized to meet the specific requirements of different construction machinery. Manufacturers can tailor machinery according to the needs of various construction projects by employing steel billets, ensuring optimal performance and efficiency. In conclusion, steel billets play a crucial role in the production of construction machinery. Through the process of hot rolling, these billets are converted into diverse profiles that serve as the foundation for constructing machinery components. The utilization of steel billets guarantees the necessary strength, durability, and customization required for the demanding specifications of construction machinery.
- Q: What are the challenges in welding steel billets?
- There are several challenges that can arise when welding steel billets. One of the main challenges is ensuring proper heat distribution during the welding process. Steel billets are often large and thick, which can make it difficult to evenly distribute heat throughout the material. This can result in inconsistencies in the weld, leading to weak spots or even failure of the joint. Another challenge is the potential for distortion and warping of the billet during the welding process. As heat is applied to the steel, it can cause the material to expand and contract, leading to unwanted changes in shape and dimensions. This can be particularly problematic when welding large or complex structures, as maintaining the desired shape and dimensions becomes critical. Additionally, steel billets can contain impurities and contaminants that can affect the quality of the weld. These impurities, such as sulfur, phosphorus, and other elements, can lead to the formation of brittle zones or other defects in the weld. Proper cleaning and preparation of the billet surface, as well as using appropriate welding techniques and filler materials, are necessary to mitigate these challenges. Furthermore, the high carbon content often found in steel billets can make them prone to cracking during the welding process. Carbon acts as a hardening agent in steel and can increase its susceptibility to cracking, especially if proper preheating and post-weld heat treatment procedures are not followed. Controlling the cooling rate and implementing stress-relieving techniques are essential in preventing cracking and ensuring the integrity of the weld. Lastly, the sheer size and weight of steel billets can present logistical challenges during the welding process. Handling and positioning these heavy objects require specialized equipment and skilled operators to ensure safety and accuracy. Additionally, the need for precise alignment and fit-up can be more challenging with large billets, requiring careful planning and execution. In conclusion, welding steel billets poses challenges such as heat distribution, distortion and warping, impurities and contaminants, carbon-induced cracking, and logistical issues. Overcoming these challenges requires expertise, proper equipment, and adherence to appropriate welding techniques and procedures.
- Q: How is the quality of steel billets determined?
- The quality of steel billets is determined through a combination of physical and chemical tests. These tests are performed to ensure that the steel meets the required standards and specifications for its intended use. One of the primary methods to determine the quality of steel billets is through chemical analysis. This involves testing the composition of the steel to ensure it meets the desired levels of different elements such as carbon, manganese, silicon, and others. The chemical composition plays a crucial role in determining the strength, hardness, and other mechanical properties of the steel. In addition to the chemical analysis, various physical tests are conducted to assess the quality of steel billets. These tests include measuring the dimensions, weight, and straightness of the billets to ensure they meet the specified tolerances. Surface inspection is also performed to detect any defects, such as cracks, seams, or surface irregularities that could affect the performance of the steel. Mechanical tests are another crucial aspect of determining the quality of steel billets. These tests evaluate the mechanical properties of the steel, including its strength, ductility, toughness, and hardness. Tensile tests are commonly conducted to measure the maximum load a steel billet can withstand before breaking or deforming. Impact tests are also performed to assess the steel's ability to resist sudden shocks or impacts. Furthermore, non-destructive testing techniques are used to detect any internal defects or inconsistencies in the steel billets. These methods include ultrasonic testing, magnetic particle inspection, and radiographic testing. These tests help ensure that the steel is free from any hidden defects that could compromise its quality or structural integrity. Overall, the quality of steel billets is determined through a comprehensive evaluation that includes chemical analysis, physical tests, mechanical tests, and non-destructive testing. These methods ensure that the steel meets the required standards and specifications, providing assurance of its reliability and suitability for various applications.
- Q: Can steel billets be used in the production of automotive components?
- Indeed, it is possible to utilize steel billets in the manufacturing process of automotive components. Steel billets, considered as intermediary steel products, are commonly employed in the production of diverse steel goods, including automotive components. These billets can undergo further processing techniques such as rolling, forging, or other methods of manipulation to achieve the desired shape and size of the automotive component. The utilization of steel in automotive components is favored due to its remarkable strength, durability, and capacity to endure demanding operational conditions. Furthermore, the utilization of steel billets provides flexibility in the manufacturing process, as they can be customized to meet the specific design requirements and performance specifications of various automotive components.
- Q: How are steel billets used in the production of oil and gas equipment?
- The production of oil and gas equipment heavily relies on steel billets, which act as vital components. These semi-finished steel products typically possess a square or rectangular shape and serve as the primary raw material for manufacturing various oil and gas equipment. Primarily, steel billets find their application in pipe production, playing a crucial role in the transportation of oil and gas from extraction sites to refineries or distribution points. After being heated, the billets are rolled into seamless or welded pipes, depending on specific requirements. These pipes are specially designed to endure high pressure, corrosive environments, and extreme temperatures, thus making them suitable for transferring oil and gas across long distances through pipelines. Furthermore, steel billets are utilized in the creation of valves and fittings, integral components of oil and gas equipment. Valves facilitate the control of oil and gas flow within pipelines, allowing for regulation and shut-off when necessary. On the other hand, fittings, such as connectors and couplings, ensure the proper connection and alignment of different pipe sections. Manufacturing these components typically involves forging or machining steel billets to guarantee strength, durability, and resistance to harsh operating conditions. In addition to pipes and valves, steel billets also play a significant role in the production of drilling equipment, including drill bits, drill collars, and drill pipes. These components are subjected to extreme forces and abrasive environments during the drilling process. To withstand such demanding conditions encountered during oil and gas exploration, steel billets undergo forging, heat treatment, and machining processes. In conclusion, the significance of steel billets in the oil and gas industry cannot be overstated. Their application in the manufacturing of pipes, valves, fittings, and drilling equipment is vital for the extraction, transportation, and processing of oil and gas. The exceptional strength, durability, and resistance to harsh conditions possessed by steel billets make them an ideal choice for constructing reliable and efficient oil and gas equipment.
- Q: What are the potential applications of steel billets in the food and beverage aftermarket?
- Steel billets have a wide range of potential applications in the food and beverage aftermarket. One potential application is in the production of food processing equipment. Steel billets can be used to manufacture machinery and equipment that is used in food processing plants, such as conveyor belts, food mixers, and cutting tools. The durability and strength of steel make it a suitable material for these applications, as it can withstand the rigors of heavy use and maintain its integrity even in harsh conditions. Another potential application of steel billets in the food and beverage aftermarket is in the construction of storage tanks and containers. Steel is known for its corrosion resistance, making it ideal for storing various food and beverage products. Steel billets can be used to manufacture tanks and containers that can safely store liquids such as water, juices, and alcoholic beverages. These steel tanks can also be insulated to ensure temperature control, which is crucial in preserving the quality of perishable products. Furthermore, steel billets can be used in the production of kitchen equipment and utensils. Steel is a hygienic material that is easy to clean and maintain, making it suitable for use in commercial kitchens and food preparation areas. Steel billets can be shaped into various kitchen utensils such as knives, pans, and cooking pots, which are essential tools in the food and beverage industry. Steel utensils are known for their durability and heat conductivity, which ensures even cooking and efficient food preparation. Overall, the potential applications of steel billets in the food and beverage aftermarket are vast. From food processing equipment to storage tanks and kitchen utensils, steel billets provide a reliable and versatile material for various industries within the food and beverage sector. Its strength, durability, and hygienic properties make it a valuable resource in ensuring the safe and efficient production, storage, and preparation of food and beverages.
- Q: What are the different types of steel billet rolling defects?
- There are several types of steel billet rolling defects that can occur during the rolling process. These defects can negatively impact the quality and integrity of the finished product. Some of the most common types of steel billet rolling defects include: 1. Surface cracks: These are small cracks that appear on the surface of the billet. They can occur due to improper cooling or excessive rolling pressure. Surface cracks can compromise the strength and durability of the steel. 2. Center cracks: Center cracks occur in the inner core of the billet. They are usually caused by improper temperature control during the rolling process. Center cracks can lead to structural weaknesses and reduced performance of the steel. 3. Scalloping: Scalloping refers to the formation of shallow depressions or grooves on the surface of the billet. It usually occurs due to uneven or improper rolling pressure distribution. Scalloping can affect the appearance and surface quality of the steel. 4. Lamination: Lamination defects involve the separation of layers within the billet. They can occur due to the presence of impurities or inclusions in the steel, as well as improper heating or rolling conditions. Lamination defects can weaken the steel and increase the risk of failure. 5. Wavy edges: Wavy edges occur when the edges of the billet become uneven or distorted during the rolling process. This can be caused by improper alignment or uneven pressure distribution. Wavy edges can affect the dimensional accuracy and overall quality of the steel. 6. Surface defects: Surface defects include scratches, pits, or other imperfections on the surface of the billet. They can occur due to inadequate cleaning or handling procedures, as well as improper rolling conditions. Surface defects can impact the appearance and surface quality of the steel. Overall, these steel billet rolling defects can have significant implications for the quality, performance, and safety of the finished product. It is important for manufacturers to closely monitor the rolling process and implement proper quality control measures to minimize the occurrence of these defects.
- Q: How are steel billets made?
- The process of making steel billets is known as casting. It begins by melting raw materials like iron ore, coal, and limestone in a blast furnace until they become molten iron. This molten iron is then further purified in either a basic oxygen furnace or an electric arc furnace to adjust its composition and remove impurities. Once the desired composition is achieved, the molten iron is poured into a continuous casting machine. This machine contains a copper mold that is cooled by water, which shapes the molten iron into a solid billet. As the molten iron is poured into the mold, it cools rapidly and solidifies, creating a continuous length of solid steel. The billet is then cut to the desired length and moved to a storage area to cool down even more before undergoing further processing. The cooling process is vital as it helps improve the internal structure and overall quality of the billet. After cooling, the steel billets can undergo various treatments, such as heat treatment or surface conditioning, to enhance their mechanical properties and surface finish. They can also be processed further into different shapes and sizes through methods like rolling, forging, or extrusion to meet specific requirements of customers. In summary, the production of steel billets involves melting the raw materials, purifying the molten iron, casting it into a continuous mold, and subsequently cooling and processing the solid billets. This process guarantees the production of high-quality steel billets that are essential components for industries such as construction, automotive, and manufacturing.
- Q: How do steel billets contribute to the manufacturing of construction products?
- The manufacturing of construction products heavily relies on steel billets, which are indispensable raw materials. These billets are created by solidifying molten steel into rectangular shapes and serve as the starting point for a range of construction products, including beams, columns, rods, and rebar. Hot rolling is a primary method by which steel billets contribute to construction product manufacturing. Once cast, the billets undergo heating and are then passed through a series of rolling mills. This process allows for the shaping of the billets into desired profiles, such as I-beams or H-columns, which are widely utilized in the construction industry. By providing a consistent and dependable supply of raw material, steel billets ensure that structural components necessary for building projects are readily available. In addition, steel billets also play a vital role in the production of reinforcing bars or rebar. Rebar is crucial for strengthening concrete structures like foundations, bridges, and buildings. The billets are heated and then passed through a rolling mill to create long, cylindrical bars with a ribbed surface. These bars are subsequently cut into specific lengths and used to enhance the tensile strength of concrete structures, thus improving their durability and structural integrity. Furthermore, steel billets find application in the manufacturing of rods and wires, which are essential for construction purposes. These versatile and pliable materials are commonly utilized in concrete reinforcement, fencing, and suspension systems. By enabling the production of various construction components, steel billets contribute significantly to the structural stability and safety of buildings and infrastructure. In conclusion, steel billets play a crucial and irreplaceable role in the manufacturing of construction products. Through processes like hot rolling, they are transformed into different profiles and shapes that serve as integral structural components. Moreover, steel billets contribute to the production of reinforcing bars, rods, and wires, which provide additional strength and support to concrete structures. The absence of steel billets would pose significant challenges for the construction industry in meeting the demand for reliable and durable construction products.
- Q: How are steel billets used in the manufacturing of energy sector components?
- Steel billets are crucial in the production of various components used in the energy sector. These billets are typically created through continuous casting, a process where liquid steel is poured into a mold and solidifies into a long, rectangular shape. Within the energy sector, steel billets are the primary raw material for manufacturing a wide range of components. One common application is in the production of pipelines. These billets are heated and then rolled or forged to create seamless or welded pipes, which are used to transport oil, gas, and other fluids over long distances. The strength and durability of steel make it an excellent material for pipelines, ensuring the safe and efficient transportation of energy resources. Steel billets also play a role in the production of power generation equipment. They are shaped and machined into components such as turbine blades, shafts, and rotors, which are vital for power plant operation. Steel's exceptional mechanical properties, including high tensile strength and corrosion resistance, make it suitable for withstanding the harsh conditions and high temperatures experienced in power generation processes. Moreover, steel billets are used in the manufacturing of renewable energy infrastructure, like wind turbine towers. These billets are transformed into large cylindrical sections that provide structural support for wind turbines. The strength and stability of steel guarantee that wind turbines can withstand the forces exerted by the wind and efficiently generate electricity. In conclusion, steel billets are essential in the energy sector as they serve as raw materials for pipelines, power generation equipment, and renewable energy infrastructure. Their strength, durability, and resistance to corrosion make them ideal for enduring demanding conditions and ensuring the reliability of energy sector components.
Send your message to us
Prime quality prepainted galvanized steel 740mm
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords