Prime Low Carbon Angle Steel with Stable Quality
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 20000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Prime Low Carbon Angle Steel with Stable Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Prime Low Carbon Angle Steel with Stable Quality are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's Prime Low Carbon Angle Steel with Stable Quality are durable, strong, and wide variety of sizes.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: Q195 – 235
Certificates: ISO, SGS, BV, CIQ
Length: 6m – 12m, as per customer request
Packaging: Export packing, nude packing, bundled
EQUAL ANGLE STEEL | |||||
size(mm) | a(mm) | a1(mm) | thickness(mm) | kg/m | length |
50*50*4 | 50 | 50 | 4 | 3.059 | 6m,9m,12m |
50*50*5 | 50 | 50 | 5 | 3.77 | 6m,9m,12m |
50*50*6 | 50 | 50 | 6 | 4.465 | 6m,9m,12m |
63*63*5 | 63 | 63 | 5 | 4.822 | 6m,9m,12m |
63*63*6 | 63 | 63 | 6 | 5.721 | 6m,9m,12m |
65*65*5 | 65 | 65 | 5 | 5 | 6m,9m,12m |
65*65*6 | 65 | 65 | 6 | 5.91 | 6m,9m,12m |
65*65*8 | 65 | 65 | 8 | 7.66 | 6m,9m,12m |
75*75*5 | 75 | 75 | 5 | 5.818 | 6m,9m,12m |
75*75*6 | 75 | 75 | 6 | 6.905 | 6m,9m,12m |
75*75*8 | 75 | 75 | 8 | 9.03 | 6m,9m,12m |
75*75*9 | 75 | 75 | 9 | 9.96 | 6m,9m,12m |
75*75*10 | 75 | 75 | 10 | 11.089 | 6m,9m,12m |
80*80*6 | 80 | 80 | 6 | 7.375 | 6m,9m,12m |
80*80*7 | 80 | 80 | 7 | 8.525 | 6m,9m,12m |
80*80*8 | 80 | 80 | 8 | 9.658 | 6m,9m,12m |
80*80*10 | 80 | 80 | 10 | 11.874 | 6m,9m,12m |
90*90*6 | 90 | 90 | 6 | 8.35 | 6m,9m,12m |
90*90*7 | 90 | 90 | 7 | 9.656 | 6m,9m,12m |
90*90*8 | 90 | 90 | 8 | 10.946 | 6m,9m,12m |
90*90*10 | 90 | 90 | 10 | 13.476 | 6m,9m,12m |
100*100*6 | 100 | 100 | 6 | 9.366 | 6m,9m,12m |
100*100*7 | 100 | 100 | 7 | 10.83 | 6m,9m,12m |
100*100*8 | 100 | 100 | 8 | 12.276 | 6m,9m,12m |
100*100*9 | 100 | 100 | 9 | 13.49 | 6m,9m,12m |
100*100*10 | 100 | 100 | 10 | 15.12 | 6m,9m,12m |
100*100*12 | 100 | 100 | 12 | 17.898 | 6m,9m,12m |
120*120*8 | 120 | 120 | 8 | 14.88 | 6m,9m,12m |
120*120*10 | 120 | 120 | 10 | 18.37 | 6m,9m,12m |
120*120*12 | 120 | 120 | 12 | 21.66 | 6m,9m,12m |
125*125*8 | 125 | 125 | 8 | 15.504 | 6m,9m,12m |
125*125*10 | 125 | 125 | 10 | 19.133 | 6m,9m,12m |
125*125*12 | 125 | 125 | 12 | 22.696 | 6m,9m,12m |
130*130*10 | 130 | 130 | 10 | 19.8 | 6m,9m,12m |
130*130*12 | 130 | 130 | 12 | 23.6 | 6m,9m,12m |
130*130*13 | 130 | 130 | 13 | 25.4 | 6m,9m,12m |
130*130*14 | 130 | 130 | 14 | 27.2 | 6m,9m,12m |
150*150*10 | 150 | 150 | 10 | 23 | 6m,9m,12m |
150*150*12 | 150 | 150 | 12 | 27.3 | 6m,9m,12m |
150*150*14 | 150 | 150 | 14 | 31.6 | 6m,9m,12m |
150*150*15 | 150 | 150 | 15 | 33.8 | 6m,9m,12m |
140*140*10 | 140 | 140 | 10 | 21.49 | 6m,9m,12m |
140*140*12 | 140 | 140 | 12 | 25.52 | 6m,9m,12m |
140*140*14 | 140 | 140 | 14 | 29.49 | 6m,9m,12m |
160*160*10 | 160 | 160 | 10 | 24.73 | 6m,9m,12m |
160*160*12 | 160 | 160 | 12 | 29.39 | 6m,9m,12m |
160*160*14 | 160 | 160 | 14 | 33.99 | 6m,9m,12m |
180*180*12 | 180 | 180 | 12 | 33.16 | 6m,9m,12m |
180*180*14 | 180 | 180 | 14 | 39.39 | 6m,9m,12m |
180*180*16 | 180 | 180 | 16 | 43.45 | 6m,9m,12m |
180*180*18 | 180 | 180 | 18 | 48.63 | 6m,9m,12m |
200*200*14 | 200 | 200 | 14 | 42.89 | 6m,9m,12m |
200*200*16 | 200 | 200 | 16 | 48.68 | 6m,9m,12m |
200*200*18 | 200 | 200 | 18 | 54.4 | 6m,9m,12m |
200*200*20 | 200 | 200 | 20 | 60.06 | 6m,9m,12m |
200*200*24 | 200 | 200 | 24 | 71.17 | 6m,9m,12m |
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.
Images:
- Q: Are steel angles magnetic?
- Yes, steel angles are magnetic. Steel is a ferromagnetic material, which means it can be magnetized and attracted to a magnet. Steel angles, being made of steel, inherit this magnetic property. The presence of iron, along with other elements, in the composition of steel makes it responsive to magnetic fields. This property is often utilized in various applications such as in the construction industry, where steel angles are commonly used for structural support.
- Q: Can steel angles be used as structural members?
- Certainly, structural members can utilize steel angles. In construction and engineering endeavors, steel angles are frequently employed to furnish structural reinforcement and stability. They are commonly utilized to fortify and enhance an assortment of structures, including edifices, bridges, and frameworks. Renowned for their robustness and endurance, steel angles are highly suitable for structural applications. They can be utilized either in combination with other steel components or independently to bear or distribute loads, bolster beams, and confer stability to the overall structure. Moreover, steel angles can be conveniently fabricated and installed, rendering them a versatile and cost-effective choice for structural members in diverse construction projects.
- Q: What is the typical yield stress of steel angles?
- The yield stress of steel angles can differ based on the grade and type of steel utilized. Nevertheless, for frequently employed carbon steels, the yield stress typically varies between 36,000 and 50,000 psi. This indicates that the steel angles can endure a specific level of stress or pressure prior to experiencing deformation or permanent alteration in shape. It is crucial to acknowledge that distinct steel alloys and treatments can lead to different yield stresses. Therefore, it is essential to refer to the specific specifications or reference materials pertaining to the particular steel angle in question.
- Q: Can steel angles be used in seismic or high-wind areas?
- Yes, steel angles can be used in seismic or high-wind areas. Steel angles are commonly used in construction for their strength and durability. They provide structural support and can withstand seismic forces and high winds when properly designed and installed. The use of steel angles in these areas is often subject to specific building codes and regulations, which ensure that the structures are capable of withstanding the forces generated by earthquakes or strong winds. Engineering analysis and design considerations must be taken into account to ensure the appropriate size, configuration, and connection details of the steel angles in order to meet the required safety standards.
- Q: Can steel angles be used for transmission towers?
- Yes, steel angles can be used for transmission towers. Steel angles provide structural strength and support, making them suitable for constructing transmission towers that need to withstand various weather conditions and carry heavy loads.
- Q: How do steel angles contribute to energy-efficient construction?
- Steel angles contribute to energy-efficient construction in several ways. Firstly, steel angles are commonly used as structural components in buildings, such as in the framing of walls, roofs, and floors. Their high strength-to-weight ratio allows for the creation of lighter and more efficient structures. This means that less steel is needed to support the building, reducing the overall weight and material usage, which in turn reduces the energy required for construction and transportation. Secondly, steel angles can be easily prefabricated off-site, allowing for faster construction times and reduced labor costs. This not only saves time and money but also minimizes energy consumption during the construction process. Moreover, steel is a highly durable and long-lasting material, which reduces the need for frequent maintenance and repairs. This durability translates into energy savings over the life cycle of the building, as less energy is required for ongoing maintenance and replacements. Additionally, steel angles can be recycled at the end of their life cycle, reducing the demand for virgin materials and minimizing the environmental impact of construction. The recycling process requires less energy compared to the production of new steel, resulting in energy savings and reduced greenhouse gas emissions. Lastly, steel angles can be integrated into energy-efficient building systems, such as insulation, HVAC ductwork, and renewable energy installations. The versatility of steel allows for the creation of systems that optimize energy performance, such as efficient heating and cooling systems or solar panel installations. In conclusion, steel angles contribute to energy-efficient construction by providing strength and stability while reducing material usage, enabling faster construction times, minimizing maintenance needs, facilitating recycling, and integrating with energy-efficient building systems.
- Q: Are steel angles suitable for historical restoration projects?
- Yes, steel angles can be suitable for historical restoration projects. They offer excellent strength and durability, which is useful for structural support and reinforcement. Additionally, steel angles can be easily fabricated to match the original design and can be finished to closely resemble the aesthetic of historical materials. However, careful consideration should be given to the specific project requirements and the preservation of historical integrity.
- Q: How do you determine the required angle size for a specific load?
- To determine the required angle size for a specific load, several factors need to be considered. Firstly, the weight of the load must be determined. This can be done by measuring the mass of the object or by consulting relevant engineering specifications. Secondly, the angle of inclination or the slope at which the load will be placed needs to be known. The angle of inclination will affect the force exerted on the angle, as well as the stability of the load. Next, the type and material of the angle being used should be considered. Different materials have different load-bearing capacities, and the type of angle (e.g., steel, aluminum, or wood) will dictate the maximum load it can support. Additionally, the length of the angle and the number of supporting points should be taken into account. Longer angles may require additional support to distribute the load evenly and prevent bending or deformation. Once all these factors are determined, calculations can be made using engineering formulas and principles. These calculations will consider the weight of the load, the angle of inclination, and the material properties of the angle to determine the required angle size. It is important to note that when designing for safety, engineers usually include a factor of safety to ensure the angle can handle loads beyond the expected maximum. This factor accounts for variables such as dynamic loads, unforeseen circumstances, and wear and tear over time. In conclusion, determining the required angle size for a specific load involves considering the weight of the load, the angle of inclination, the material properties of the angle, the length of the angle, and the number of supporting points. Through calculations and incorporating a factor of safety, the appropriate angle size can be determined to ensure the load is supported safely and effectively.
- Q: Can steel angles be used in railway infrastructure?
- Yes, steel angles can be used in railway infrastructure. Steel angles, also known as L-shaped structural steel, have a variety of applications in the construction industry, including railway infrastructure. They are commonly used in the fabrication of railway tracks, bridges, support structures, and other components of the railway system. Steel angles are preferred in railway infrastructure due to their high strength, durability, and versatility. They can withstand heavy loads and provide excellent structural support, making them suitable for the demanding conditions of railway tracks and structures. Steel angles are also resistant to corrosion, which is crucial for railway infrastructure exposed to harsh environmental conditions. In railway tracks, steel angles are often used as base plates, connecting the rails to the sleepers or ties. They provide stability and distribute the load evenly, ensuring the safe and smooth operation of trains. Steel angles are also used in the construction of bridges, where they serve as the main structural element for supporting the weight of the trains. Furthermore, steel angles can be easily fabricated and installed, making them a cost-effective choice for railway infrastructure projects. They can be cut, welded, and shaped to meet specific design requirements, allowing for efficient construction and customization. Overall, steel angles have proven to be a reliable and efficient choice for railway infrastructure. Their strength, durability, and versatility make them suitable for various applications in the railway system, contributing to the safety and efficiency of train operations.
- Q: Can steel angles be used in high-temperature environments?
- The performance of steel angles in high-temperature environments relies on the grade of steel used. Some steel angles are specifically designed for high-temperature applications and can endure extreme heat without significant distortion or structural failure. These high-temperature steel angles are typically made from alloys with excellent heat resistance properties, such as stainless steel or nickel-based alloys. However, it is crucial to consider the operating temperature and duration of exposure when choosing steel angles for high-temperature environments. Prolonged exposure to high temperatures can still cause material degradation, including oxidation, reduced mechanical properties, or even melting in extreme cases. To ensure that steel angles are suitable for high-temperature environments, it is advisable to seek advice from experts or engineers who possess knowledge about the specific application. They can offer guidance on selecting the appropriate grade of steel angle. In addition, regular inspections and maintenance are essential to detect any signs of degradation or wear caused by high temperatures.
Send your message to us
Prime Low Carbon Angle Steel with Stable Quality
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 20000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords