K340/DC53 High Toughness Alloy Steel Plate
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Chemical Composition(%)
C | Si | Mn | Cr | Mo | V | S | P |
1.00 | 1.00 | 0.35 | 8.00 | 2.00 | 0.25 | ≤0.030 | ≤0.030 |
Available Size
Rolled flat steel :12-90mm × 205-610mm × L
Heat Treatment
Item | Temperature ℃ | Hardness |
Anneal | 820-840 | ≤241HB |
Quenching | 1020-1040 | 62-65 |
Tempering | No.1:180-200 | 60-62 |
No.2:500-550(2) | 60-63 |
Characterstics
1.High toughness and abrasion resistance steel | |||||||
2.High hardening ability | |||||||
3.Less quenching deformation | |||||||
4.Higher toughness and more homogeneous carbide distribution than D2 steel |
Applications: Suitable for cold shearing dies,cutting dies,trimming dies,measuring gauges,wire-drawing dies,screw plates,cold punching dies,etc
1, Your advantages?
professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale
2, Test & Certificate?
SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem
3, Payment Terms?
30% TT as deposit and 70% before delivery.
Irrevocable L/C at sight.
4, Trading Terms?
EXW, FOB, CIF, FFR, CNF
6, After-sale Service?
We provides the services and support you need for every step of our cooperation. We're the business partner you can trust.
For any problem, please kindly contact us at any your convenient time.
We'll reply you in our first priority within 24 hours.
- Q: How does special steel contribute to the machinery manufacturing industry?
- Special steel plays a vital role in the machinery manufacturing industry as it offers enhanced strength, durability, and resistance to wear and corrosion. Its unique properties allow for the production of high-performance machinery components, such as gears, shafts, bearings, and cutting tools. Special steel also enables manufacturers to create machines that can operate in extreme conditions, handle heavy loads, and deliver superior performance, ultimately increasing productivity and efficiency in the industry.
- Q: What are the different passivation techniques used for special steel?
- There are several passivation techniques used for special steel, including chemical passivation, electrochemical passivation, and mechanical passivation. Chemical passivation involves treating the steel surface with acids or other chemical solutions to remove impurities and create a passive film that protects against corrosion. Electrochemical passivation utilizes an electrical current to enhance the formation of the protective oxide layer. Mechanical passivation involves processes like abrasive blasting or grinding to remove contaminants and improve the surface finish. These techniques are commonly employed to enhance the corrosion resistance and durability of special steel.
- Q: What are the requirements for special steel used in pharmaceutical manufacturing?
- The pharmaceutical manufacturing industry demands stringent requirements for special steel. To guarantee the safety, purity, and effectiveness of the products, the steel must adhere to specific specifications and meet various criteria. Foremost, the steel used in pharmaceutical manufacturing must be of top-notch quality and possess exceptional corrosion resistance. This is vital to prevent any contamination or reaction with the pharmaceutical compounds or chemicals involved. It is imperative that the steel does not release any impurities that could compromise the purity of the final product. Additionally, the steel must be capable of withstanding high temperatures and pressures, as pharmaceutical manufacturing processes often involve heat treatment, sterilization, and other high-temperature operations. It is crucial that the steel maintains its structural integrity and does not affect the quality of the pharmaceutical products under these conditions. Another significant requirement for the steel used in pharmaceutical manufacturing is easy cleanability. The steel should have a smooth surface without any cracks, crevices, or rough areas that could trap bacteria, contaminants, or residues. This is essential to maintain the hygiene and sterility of the manufacturing environment and ensure that the pharmaceutical products meet the highest quality standards. Furthermore, the steel must comply with regulatory standards and industry guidelines. It should meet the specific requirements set by regulatory bodies such as the Food and Drug Administration (FDA) or the European Medicines Agency (EMA). These standards often include specifications regarding the composition, mechanical properties, and traceability of the steel. In conclusion, the requirements for special steel used in pharmaceutical manufacturing are strict and encompass factors such as top-notch quality, corrosion resistance, heat resistance, cleanability, and compliance with regulatory standards. Meeting these requirements is vital to guarantee the safety, purity, and effectiveness of the pharmaceutical products manufactured using this steel.
- Q: How does special steel contribute to the ductility of products?
- Special steel contributes to the ductility of products through its unique composition and manufacturing processes. Ductility refers to a material's ability to deform under stress without fracturing or breaking. In the case of special steel, its composition includes certain alloying elements that enhance its ductility. One way special steel contributes to ductility is by reducing the presence of impurities. Special steel is produced with strict quality control measures, ensuring that impurities such as sulfur and phosphorus are kept at low levels. These impurities can cause brittleness in steel, reducing its ductility. By minimizing their presence, special steel maintains its ductile properties, allowing it to deform without failure. Furthermore, special steel often contains specific alloying elements like nickel, chromium, and molybdenum. These alloying elements play a crucial role in enhancing ductility. For instance, nickel improves the toughness and ductility of steel by increasing its ability to absorb energy before fracture. Chromium, on the other hand, enhances resistance to corrosion and oxidation, thereby preserving the ductility of the steel. The manufacturing processes used to produce special steel also contribute to its ductility. Precise temperature control during the heat treatment of special steel can optimize the microstructure, resulting in improved ductility. Additionally, special steel can undergo various forming processes, such as hot or cold rolling, which further refine its microstructure and enhance its ductility. Overall, special steel's unique composition, low impurity levels, and specific alloying elements, combined with precise manufacturing processes, contribute significantly to its ductility. This makes it an excellent choice for products that require deformation without failure, such as automotive components, machinery parts, and structural applications.
- Q: What are the properties of weathering steel?
- Weathering steel, also known as Corten steel, has several distinct properties. Firstly, it exhibits enhanced corrosion resistance due to the formation of a protective layer of rust on its surface, which prevents further corrosion and eliminates the need for painting. Secondly, weathering steel has a high tensile strength, making it suitable for structural applications. Additionally, it possesses excellent toughness and can withstand harsh environmental conditions, including extreme temperatures and high winds. Lastly, weathering steel has a unique appearance, with a rusty orange-brown color that blends well with natural landscapes.
- Q: How does special steel perform in tooling applications?
- Due to its unique properties and characteristics, special steel excels in tooling applications. Also known as tool steel, this type of steel is specifically designed and manufactured to endure the challenging conditions of tooling applications. One major advantage of special steel is its exceptional hardness. Tooling applications often involve cutting, shaping, and forming tough materials, and the hardness of special steel enables it to withstand the extreme pressures and forces involved in these processes effectively. Additionally, this hardness helps maintain the cutting edges' sharpness for extended periods, ensuring consistent and precise performance. Moreover, special steel demonstrates excellent resistance to wear. Tooling applications typically involve repetitive and abrasive actions, which can cause significant wear and tear on the tools. However, the wear resistance of special steel ensures that the tools maintain their performance and longevity, reducing the need for frequent replacements and downtime. Another crucial aspect of special steel is its remarkable toughness. Tooling applications often subject the tools to sudden impacts and shock loads. Special steel's toughness allows it to absorb these impacts without fracturing or breaking, making it highly reliable and durable in such applications. In addition, special steel offers good heat resistance and dimensional stability. Tooling applications frequently involve high temperatures, and special steel's ability to withstand heat prevents it from losing its hardness and other mechanical properties. This ensures consistent performance and dimensional stability, resulting in accurate and precise tooling. Lastly, special steel is also recognized for its corrosion resistance. Tooling applications may expose the tools to moisture, chemicals, or harsh environments, which can lead to corrosion and degradation. The corrosion resistance of special steel protects the tools from these corrosive elements, prolonging their lifespan and maintaining their performance. To conclude, special steel's hardness, wear resistance, toughness, heat resistance, dimensional stability, and corrosion resistance make it highly effective in tooling applications. These properties enable special steel tools to withstand the demanding conditions of tooling applications, ensuring reliable and long-lasting performance.
- Q: What are the cutting tools used for machining special steel?
- The cutting tools commonly used for machining special steel include carbide inserts, high-speed steel (HSS) drills, end mills, and broaches. These tools are specifically designed to withstand the high temperatures and hardness of special steels, ensuring precise and efficient cutting operations.
- Q: What are the different impact-resistant grades of special steel?
- There are various impact-resistant grades of special steel, including AR400, AR500, AR550, and AR600. These grades are specifically designed to withstand high levels of impact and abrasion, making them suitable for applications such as construction equipment, industrial machinery, and mining tools.
- Q: What are the main factors affecting the corrosion fatigue strength of special steel?
- The corrosion fatigue strength of special steel is influenced by several factors. Firstly, the composition of the steel plays a crucial role. Special steels typically contain various alloying elements such as chromium, nickel, molybdenum, and copper, which enhance their corrosion resistance. The presence and amount of these elements can significantly affect the corrosion fatigue strength of the steel. Higher levels of alloying elements generally improve the resistance to corrosion fatigue. Secondly, the surface condition of the steel is important. Any surface defects, such as scratches, pits, or roughness, can act as stress concentrators and accelerate the initiation and propagation of corrosion fatigue cracks. Additionally, the presence of surface contaminants, such as dirt, grease, or salts, can increase the corrosive environment and reduce the corrosion fatigue strength of the steel. Thirdly, the environmental conditions in which the steel is exposed play a significant role. Corrosion fatigue occurs due to the combined action of cyclic loading and a corrosive environment. Factors such as temperature, humidity, pH, and the presence of corrosive substances like saltwater or chemicals can accelerate the corrosion process and reduce the fatigue strength of the steel. Furthermore, the mechanical properties of the steel, such as its hardness, strength, and ductility, also influence its corrosion fatigue strength. Higher strength and hardness can enhance the resistance to fatigue crack initiation, while greater ductility can improve the resistance to crack propagation. However, excessive hardness or brittleness can decrease the corrosion fatigue strength. Lastly, the design and manufacturing processes of components made from special steel can impact their corrosion fatigue strength. Factors such as welding techniques, heat treatment, and surface finishing can introduce residual stresses or alter the microstructure of the steel, affecting its corrosion fatigue behavior. Overall, the corrosion fatigue strength of special steel is influenced by its composition, surface condition, environmental conditions, mechanical properties, and manufacturing processes. Understanding and appropriately addressing these factors are crucial for enhancing the corrosion fatigue resistance of special steel components.
- Q: What are the challenges in surface treating special steel?
- When it comes to surface treating special steel, a range of challenges can arise due to the unique properties and composition of the material. Some of the main challenges that need to be addressed are as follows: 1. Hardness: Special steels often possess a high level of hardness, which poses difficulties in achieving effective surface treatment. Traditional methods like heat treatment or chemical processes may not be sufficient to modify the surface properties without impacting the core strength. 2. Surface contamination: During the surface treatment process, special steels are vulnerable to contamination. Even the smallest traces of impurities or foreign materials can compromise the integrity of the treated surface. It is crucial to maintain a controlled environment and utilize clean equipment to minimize the risks of contamination. 3. Complex alloy composition: Special steels are typically alloyed with various elements to enhance specific characteristics, such as corrosion resistance or high temperature stability. This complex composition can make it challenging to find suitable surface treatment techniques that can effectively modify the surface properties without negatively affecting the overall performance of the alloy. 4. Adhesion and coating uniformity: Ensuring good adhesion and coating uniformity on special steel surfaces can be problematic. The surface characteristics and microstructure of special steels can make it challenging for coatings or treatments to properly and evenly adhere. Special attention must be paid to surface preparation and the selection of appropriate primers or coatings to ensure optimal adhesion and uniformity. 5. Heat sensitivity: Some special steels may be sensitive to heat during surface treatment processes. Excessive heat exposure can lead to changes in the material's properties, including structural alterations or deformation. It is essential to carefully control temperatures and employ suitable cooling methods to prevent any undesirable effects on the steel during the surface treatment process. 6. Cost: The process of surface treating special steel can be costly due to the specialized equipment, materials, and expertise required. Additionally, the challenges mentioned above can increase the complexity and time needed for surface treatment, resulting in higher costs. It is crucial to take these factors into consideration when planning and budgeting for surface treatment on special steel components.
Send your message to us
K340/DC53 High Toughness Alloy Steel Plate
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords