• 1.1645 Alloy Steel Special Steel Steel Plate System 1
  • 1.1645 Alloy Steel Special Steel Steel Plate System 2
  • 1.1645 Alloy Steel Special Steel Steel Plate System 3
1.1645 Alloy Steel Special Steel Steel Plate

1.1645 Alloy Steel Special Steel Steel Plate

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Sheet
Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Thickness:
as required
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Length:
as required
Net Weight:
as required

Chemical Composition%

CountryStandardCSiMnCrSP
China(GB)T10A0.95-1.04≤0.35≤0.40-≤0.030≤0.030
USA(ASTM)W1100.95-1.10≤0.35≤0.35≤0.20--
Germany(DIN)1.16451.00-1.100.10-0.300.10-0.35-≤0.030≤0.030
Japan(JIS)SK1051.00-1.100.15-0.350.15-0.50≤0.30≤0.030≤0.030

 

Available Size

Rolled flat steel20-100mm×205-600mm×L
Forged flat steel110-300mm×400-600mm×L

 

Heat Treatment

ItemTemperature ℃Hardness
Anneal750-760℃≤210HB
Quenching770-790℃62-64HRC
Tempering160-250℃58-62HRC

 

Characterstics

1.Low quenching temperature 
2.Higher hardness and abrasion resistance after heat treatment
3.poor hardening ability and notable deformation 

 

Applications:  Suitable for cold working dies and plastic moulds with simple shape


.jpg

1.1645 Alloy Steel Special Steel Steel Plate

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

4, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

    We provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.


Q: How is special steel used in the production of heat exchangers?
Special steel, with its unique properties, finds extensive application in the production of heat exchangers. These devices are designed to transfer heat between different mediums, and special steel offers several advantages in this process. To begin with, the thermal conductivity of special steel is exceptional, allowing for efficient heat transfer between fluids. This characteristic is vital for heat exchangers as it enables the rapid and effective exchange of thermal energy. Moreover, special steel exhibits high resistance to corrosion, making it highly suitable for heat exchanger applications. Since heat exchangers often come into contact with corrosive fluids or gases, regular steel may deteriorate over time. However, special steel is specifically engineered to resist corrosion, ensuring the durability and reliability of the heat exchanger. Furthermore, special steel possesses remarkable strength and durability, enabling heat exchangers to withstand high pressures and temperatures. Given that heat exchangers frequently operate in challenging environments, special steel can endure these harsh conditions without compromising its structural integrity. Additionally, special steel offers excellent weldability and formability, simplifying the manufacturing of intricate heat exchanger designs. Its versatility allows for the production of heat exchangers in various shapes and sizes, catering to the specific requirements of different industries. In conclusion, special steel is an ideal material for heat exchanger applications due to its high thermal conductivity, corrosion resistance, strength, durability, weldability, and formability. These properties ensure efficient heat transfer, resistance to corrosion, and the ability to withstand harsh operating conditions.
Q: What are the common defects found in special steel production?
Some common defects found in special steel production include surface cracks, internal voids or inclusions, segregation, decarburization, and improper grain size.
Q: Can special steel be used in the agricultural equipment manufacturing industry?
Yes, special steel can be used in the agricultural equipment manufacturing industry. Special steel, which includes alloys such as stainless steel and high-strength steel, offers superior strength, durability, corrosion resistance, and heat resistance properties. These qualities make it suitable for various agricultural equipment components like plows, tillers, harvesters, and machinery parts. Special steel can enhance the performance and lifespan of agricultural equipment, ensuring that they can withstand the demanding conditions and rigorous use in the industry.
Q: What are the specific requirements for special steel used in the automotive piston industry?
The specific requirements for special steel used in the automotive piston industry are designed to ensure high performance, durability, and efficiency of the pistons. These requirements include: 1. High strength: Special steel used in automotive pistons must possess high tensile strength and hardness to withstand the extreme pressures and temperatures generated during combustion. 2. Heat resistance: The steel must have excellent heat resistance properties to withstand the intense heat generated by the combustion process without deforming or losing strength. 3. Wear resistance: Pistons undergo constant friction and wear against the cylinder walls. Therefore, the special steel used must have good wear resistance to minimize the wear and tear and prolong the lifespan of the piston. 4. Low thermal expansion: The steel should have a low coefficient of thermal expansion to prevent excessive expansion and contraction during temperature variations, ensuring a tight seal between the piston and cylinder walls. 5. Corrosion resistance: Pistons are exposed to various corrosive elements, including combustion by-products and engine oil. Special steel used in piston manufacturing must have good corrosion resistance to prevent premature deterioration and failure. 6. Fatigue resistance: The steel should possess excellent fatigue resistance to withstand the repetitive stress cycles experienced by the piston during engine operation. 7. Machinability: Special steel used in pistons should be easily machinable to achieve precise dimensions and tolerances necessary for optimal performance. 8. Cost-effectiveness: While meeting the above requirements, special steel used in the automotive piston industry should also be cost-effective to ensure profitability for the manufacturers. By meeting these specific requirements, special steel used in the automotive piston industry contributes to the overall performance, reliability, and longevity of the piston, which in turn enhances the efficiency and durability of the entire engine system.
Q: What are the different types of nitriding steel?
There are several different types of nitriding steel, including gas nitriding steel, liquid nitriding steel, salt bath nitriding steel, and plasma nitriding steel.
Q: Can special steel be used in the cement manufacturing industry?
Yes, special steel can be used in the cement manufacturing industry. Special steel is often used for various applications in the cement industry, such as in the construction of kilns, crushers, mills, and other heavy-duty equipment. Its high strength, corrosion resistance, and durability make it suitable for withstanding the harsh conditions and abrasive materials involved in cement production.
Q: How is special steel used in the production of turbine shafts?
Special steel is used in the production of turbine shafts due to its high strength, durability, and resistance to corrosion and fatigue. The unique properties of special steel make it ideal for withstanding the extreme conditions and loads experienced by turbine shafts during operation, ensuring efficient and reliable power generation.
Q: What are the requirements for special steel used in high-temperature applications?
Special steel used in high-temperature applications, such as in the aerospace, power generation, and oil and gas industries, needs to meet certain requirements to ensure its performance and durability in extreme conditions. Some of the key requirements for special steel used in high-temperature applications are: 1. High Temperature Strength: Special steel used in high-temperature applications should possess excellent strength and resistance to deformation at elevated temperatures. This is crucial to ensure the structural integrity of components and prevent any form of failure or deformation under extreme heat. 2. Oxidation Resistance: The steel should have a high resistance to oxidation, which is the reaction between the metal and oxygen at high temperatures. Oxidation can lead to the formation of oxides on the surface of the steel, which can weaken its structure and compromise its performance. 3. Creep Resistance: Creep is the gradual deformation of a material under constant stress at high temperatures. Special steel used in high-temperature applications should have excellent creep resistance to prevent any excessive deformation or failure over time. 4. Thermal Stability: Special steel should have good thermal stability, meaning it can retain its mechanical properties even after prolonged exposure to high temperatures. This ensures that the steel remains reliable and performs consistently in extreme heat conditions. 5. Corrosion Resistance: In addition to oxidation, special steel used in high-temperature applications should also have good corrosion resistance. This protects the steel from the harmful effects of various corrosive agents, such as acids, alkalis, and salts, which may be present in the environment. 6. Thermal Fatigue Resistance: Thermal fatigue is the damage caused by repeated heating and cooling cycles. Special steel used in high-temperature applications should have high resistance to thermal fatigue to prevent any cracking, fracturing, or failure due to the stress caused by temperature changes. 7. Low Thermal Expansion: Special steel should have low thermal expansion to minimize dimensional changes and maintain dimensional stability under high-temperature conditions. This ensures that the steel retains its shape and size accurately, preventing any unwanted distortions or misalignments. 8. Good Weldability: Special steel used in high-temperature applications should have good weldability to facilitate the fabrication and joining of various components. This allows for the construction of complex structures and assemblies required in high-temperature environments. Meeting these requirements ensures that special steel used in high-temperature applications is capable of withstanding extreme heat, maintaining its structural integrity, and providing reliable performance in demanding conditions.
Q: How is magnetic alloy steel used in the production of magnetic components?
Magnetic alloy steel is commonly used in the production of magnetic components due to its unique magnetic properties. It is an essential material for manufacturing products like magnetic cores, transformers, and inductors. The alloy's high saturation magnetization and low coercivity make it ideal for creating strong and efficient magnetic fields. Additionally, its excellent thermal stability ensures reliable performance under various operating conditions. Overall, magnetic alloy steel enhances the functionality and efficiency of magnetic components, making it a crucial material in their production.
Q: How does special steel contribute to the automotive industry?
Special steel plays a crucial role in the automotive industry by providing high-strength and durable materials for various components like engine parts, chassis, and suspension systems. These steels offer superior mechanical properties, such as increased tensile strength, toughness, and wear resistance, enabling the production of lighter, safer, and more fuel-efficient vehicles. The use of special steel also enhances the performance and longevity of automotive parts, ensuring better reliability and reduced maintenance costs for the end-users.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords