• Hot Rolled Steel Billet 3SP Standard 170mm System 1
  • Hot Rolled Steel Billet 3SP Standard 170mm System 2
  • Hot Rolled Steel Billet 3SP Standard 170mm System 3
  • Hot Rolled Steel Billet 3SP Standard 170mm System 4
  • Hot Rolled Steel Billet 3SP Standard 170mm System 5
  • Hot Rolled Steel Billet 3SP Standard 170mm System 6
Hot Rolled Steel Billet 3SP Standard 170mm

Hot Rolled Steel Billet 3SP Standard 170mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Hot Rolled Steel Billet 3SP Standard 170mm

  RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Description of Hot Rolled Steel Billet 3SP Standard 170mm
Prepainted Rolled steel Coil is a kind of coated steel coil/sheet. With the cold rolled steel of different strength and thickness as substrate, it is produced through applying Al-Zn coat on both faces by hot dip process. In its coating, Al accounts for about 55%, Si 1.6%, while the remaining is Zn. Aluminum zinc coils enjoys both the physical protective feature and durability of Al and the electrochemical protective property of Zn. And its surface has bright silver color and regular embossed-like figure, which are highly decorative. RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Main Feature of Hot Rolled Steel Billet 3SP Standard 170mm

1.Corrosion resistance: It mainly depends on the zinc protection. When the zinc being worn,

2. Heat resistance: steel sheet has excellent heat resistance, can withstand high temperatures over 300 centigrade, and is similar with aluminized steel high temperature oxidation resistance. It often used in chimney pipes, ovens, fluorescent lighting device and the device cover. 
3. Heat reflective: Galvanized steel plate heat-reflective high rate is twice as galvanized steel, often used to make insulation materials.  RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing


Applications of Hot Rolled Steel Billet 3SP Standard 170mm
1. Construction and building: roofing; ventilating duct; handrail; partition panel;etc.

2. Electric appliance: refrigerator; washing machine; refrigerator; DVD;etc.

3.Transportation: oil tank; gas tank;road sign; etc.
4.Agriculture constructions :barn; etc.RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

5.Others:vending machine; game machine; auto parts spare parts etc.  

 RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

 

Specifications of Hot Rolled Steel Billet 3SP Standard 170mm

Product

Hot Rolled Steel Billet 3SP Standard 170mm

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.5-3.0mm

Width

700-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

AZ30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled,RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

25MT max

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

 

FAQ of Hot Rolled Steel Billet 3SP Standard 170mm

We have organized several common questions for our clients,may help you sincerely:

1. What is the minimum order quantity ? 

Our MOQ is 100 mt for each size each specification. Usually we can offer discount if can buy large QTY once. RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

2. How long can we receive the product after ordering?

Our general delivery time is 30 days after confirmation, but so some special orders, we have offer special delivery time

3. How to guarantee the quality of the products?

We have established the international advanced quality management system ,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

4. What is the payment?

We accept T/T, L/C 

Q: How to purchase suitable billet heating furnace
Billet heating furnace manufacturers are many, the procurement of cost-effective equipment is the user's best choice. Choice can not be blind, you can not just look at the price, the choice of advice you consult more manufacturers, and then use the exclusion method to determine your final goal. Online can take a look at live video, more reference.
Q: What are the different methods of steel billet surface honing?
There are various techniques available for honing the surface of steel billets, each serving a specific purpose and yielding distinct outcomes. Some commonly employed methods are as follows: 1. Manual Honing: This traditional approach entails the use of handheld honing tools, such as stones or abrasive pads, to manually eliminate imperfections or roughness from the steel billet's surface. Skilled operators meticulously rub the honing tool along the billet's surface until the desired level of smoothness is attained. 2. Mechanical Honing: To automate the honing process, mechanical honing machines are employed. These machines are equipped with rotating abrasive stones or pads that traverse the billet's surface, eliminating any irregularities. Mechanical honing allows for a more consistent and precise honing process, with the ability to control factors such as pressure, speed, and contact area. 3. Diamond Honing: Diamond honing is a specialized technique that utilizes tools coated with diamond particles to achieve a high level of precision and smoothness. The diamond particles on the honing tool offer superior cutting capabilities, enabling the removal of even the smallest imperfections. This method is often utilized for honing high-quality steel billets that necessitate a flawless surface finish. 4. Hydrohoning: Also known as abrasive flow machining, hydrohoning involves employing a viscous abrasive medium that is forced through the internal passages of the billet to eliminate surface irregularities. This method is particularly effective for honing complex shapes or hard-to-reach internal surfaces. The abrasive medium can be adjusted to obtain different levels of surface finish. 5. Electrochemical Honing: Electrochemical honing combines the principles of electrochemical machining and honing. It involves utilizing a specialized electrolyte solution and a honing tool with an electrode to remove material from the billet's surface. This method is effective for honing hard materials and achieving a smooth, mirror-like finish. These represent only a selection of the diverse methods available for honing the surface of steel billets. The choice of technique relies on factors such as the desired surface finish, the complexity of the billet's shape, the material being honed, and the level of precision required.
Q: How are steel billets used in the manufacturing of power plant equipment?
Steel billets are an essential component in the manufacturing of power plant equipment due to their superior strength and durability. These billets serve as the raw material that is shaped and formed into various parts and components required for power plant machinery. One of the key applications of steel billets in power plant equipment manufacturing is in the production of turbine blades. These blades are subjected to high temperatures, extreme pressures, and rotational forces. Steel billets are carefully selected to possess the necessary mechanical properties, such as high tensile strength and resistance to corrosion and fatigue, ensuring the blades can withstand the demanding operating conditions. Moreover, steel billets are also used in the production of generator rotors and stators. These components are responsible for converting mechanical energy into electrical energy. The strength and stability of steel billets allow them to withstand the intense magnetic fields and rotational forces generated by the generator, ensuring reliable and efficient power generation. Furthermore, steel billets are utilized in the manufacturing of boilers and pressure vessels, which are crucial for the power generation process. These vessels are subjected to high pressures and temperatures, and steel billets with excellent heat resistance and pressure containment properties are employed to ensure the safety and reliability of the power plant equipment. In summary, steel billets are integral to the manufacturing of power plant equipment due to their superior strength, durability, and resistance to extreme conditions. Whether it is for turbine blades, generator components, or pressure vessels, steel billets play a crucial role in ensuring the reliable and efficient operation of power plants.
Q: How are steel billets used in the production of oil and gas pipelines?
Steel billets are used in the production of oil and gas pipelines as they serve as the raw material for manufacturing pipeline sections. These billets are heated, shaped, and welded to form seamless or welded pipeline pipes. The high strength and durability of steel make it an ideal material for pipelines, providing a reliable and safe means of transporting oil and gas over long distances.
Q: How do steel billets contribute to the overall recyclability of a product?
Steel billets contribute to the overall recyclability of a product by being a primary raw material in steel production. When a product made of steel reaches the end of its life cycle, it can be recycled and transformed into new steel products using steel billets. This reduces the need for extracting and refining new raw materials, conserves energy, and minimizes waste, making the overall recycling process more efficient and sustainable.
Q: How are steel billets used in the production of construction machinery?
Construction machinery relies heavily on steel billets, which are essential in its production. These semi-finished steel products are shaped into different forms and sizes to fabricate the necessary components. After acquiring the steel billets, they undergo heating and are subsequently passed through rolling mills to attain the desired shapes. This hot rolling process enables the transformation of the billets into profiles like beams, channels, and angles, which are commonly utilized in machinery construction. The shaped steel components derived from these billets undergo further processing and fabrication to create various parts of construction machinery. These parts encompass base frames, chassis, booms, arms, buckets, and other structural elements. The utilization of steel billets in constructing machinery offers numerous advantages. Steel is renowned for its exceptional strength, durability, and resistance to wear and tear, making it an ideal material for heavy-duty machinery. Furthermore, steel is capable of withstanding severe weather conditions and heavy loads, ensuring the machinery's longevity and reliability. Moreover, steel billets are versatile and can be customized to meet the specific requirements of different construction machinery. Manufacturers can tailor machinery according to the needs of various construction projects by employing steel billets, ensuring optimal performance and efficiency. In conclusion, steel billets play a crucial role in the production of construction machinery. Through the process of hot rolling, these billets are converted into diverse profiles that serve as the foundation for constructing machinery components. The utilization of steel billets guarantees the necessary strength, durability, and customization required for the demanding specifications of construction machinery.
Q: What are the environmental impacts of manufacturing steel billets?
The extraction and processing of raw materials, energy consumption, and waste generation all have a significant impact on the environment when manufacturing steel billets. 1. When extracting raw materials, such as iron ore, coal, and limestone, from the earth, mining practices may result in deforestation, habitat destruction, soil erosion, and water pollution. The extraction of iron ore specifically requires a large amount of water, which can strain local water supplies. 2. The production of steel billets demands high temperatures, which are typically achieved by burning fossil fuels like coal and natural gas. This energy-intensive process increases greenhouse gas emissions, including carbon dioxide (CO2) and nitrogen oxides (NOx), contributing to climate change and air pollution. 3. The combustion of fossil fuels in steel production also releases particulate matter (PM), sulfur dioxide (SO2), and other harmful pollutants into the air. These emissions can negatively impact human health, leading to respiratory problems and the formation of smog. 4. Steel manufacturing generates wastewater that contains chemicals and heavy metals. If not managed properly, these pollutants can contaminate water bodies, harming aquatic ecosystems and posing risks to human health. Additionally, the cooling process for steel production requires large amounts of water, potentially leading to water scarcity in certain regions. 5. The production of steel results in significant waste, including slag, dust, and sludge. These by-products may contain toxic substances and require careful handling and disposal to prevent contamination of soil and water. To mitigate these environmental impacts, various measures can be taken. These include adopting cleaner production technologies, improving energy efficiency, promoting material recycling and reuse, implementing effective waste management practices, and investing in renewable energy sources. Additionally, companies can reduce their carbon footprint by implementing carbon capture and storage technologies or transitioning to low-carbon energy sources like electric arc furnaces powered by renewable energy. Furthermore, government regulations and international agreements play a crucial role in enforcing environmental standards and encouraging sustainable practices within the steel manufacturing industry.
Q: What are the different forging techniques used for steel billets?
Steel billets can be forged using various techniques, each with its own benefits and results. Some commonly employed methods for forging steel billets are: 1. Open Die Forging: By placing the steel billet between two flat dies and applying compressive force, it can be shaped. This technique allows for the formation of a wide range of shapes and is often used for large and intricate components. 2. Closed Die Forging: Also known as impression die forging, this method utilizes specially shaped dies with impressions of the desired final shape. The steel billet is positioned between the dies and compressed to conform to the cavities. Closed die forging provides precise control over the shape and dimensions of the end product. 3. Roll Forging: Here, the steel billet is passed through rotating rolls that exert compressive force to shape it. Roll forging is commonly employed for the production of long cylindrical shapes like bars, rods, and shafts. 4. Upset Forging: This technique involves axial compression of the steel billet to increase its cross-sectional area and reduce its length. Upset forging is often used to create thicker sections or increase the material's diameter. 5. Press Forging: Hydraulic or mechanical presses are used in press forging to apply force to the steel billet, shaping it against the die. This method enables precise control over the forging process, making it suitable for intricate shapes or close tolerances. 6. Swaging: Swaging is a forging technique where the diameter of a steel billet is reduced by applying radial compressive force using a series of dies. This process is commonly employed to produce tapered or pointed components like pins, bolts, or needles. Each of these forging techniques offers unique advantages depending on the desired shape, size, and properties of the final product. The choice of forging technique is determined by factors such as part complexity, material properties, production volume, and cost considerations.
Q: How do steel billets contribute to the chemical industry?
Steel billets are an essential raw material in the chemical industry for the production of various chemicals and chemical products. These billets, which are solid bars or rods of steel, play a crucial role in the manufacturing process. Firstly, steel billets are used in the construction of reactors and vessels that are used in chemical production plants. These reactors are designed to withstand high temperatures and pressure, and steel billets provide the necessary strength and durability for these applications. The chemical reactions that take place in these reactors often involve corrosive or harsh chemicals, and the use of steel billets ensures that the equipment remains intact and prevents any leaks or accidents. Furthermore, steel billets are also used in the production of catalysts, which are substances that facilitate chemical reactions without being consumed in the process. Many catalysts are made from metals or metal oxides, and steel billets are often used as the base material for their production. By providing a stable and strong foundation, steel billets help ensure the efficiency and effectiveness of these catalysts. Additionally, steel billets are used in the construction of pipelines and storage tanks that are crucial for transporting and storing chemicals. These structures need to be able to withstand high pressures and corrosive environments, and steel billets are the preferred material due to their strength, durability, and resistance to chemical degradation. They ensure the safe and efficient transportation and storage of chemicals, which is crucial for the chemical industry. In conclusion, steel billets are indispensable in the chemical industry due to their strength, durability, and resistance to chemical degradation. They are used in the construction of reactors, vessels, catalysts, pipelines, and storage tanks, all of which are essential components of chemical production and transportation. Without steel billets, the chemical industry would struggle to operate efficiently and safely.
Q: What is the role of steel billets in the manufacturing of offshore structures?
Steel billets play a crucial role in the manufacturing of offshore structures as they serve as the foundational raw material for creating various components such as beams, columns, and plates. These billets are first heated and then shaped or molded into desired forms through processes like rolling or forging. Their high strength, durability, and resistance to corrosion make them ideal for withstanding the harsh marine environment in which offshore structures operate. Overall, steel billets are essential in ensuring the structural integrity and longevity of offshore structures, providing the necessary strength and stability to withstand the challenging conditions of the open seas.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords