• Hot Rolled Steel Billet 3SP Standard 150mm System 1
  • Hot Rolled Steel Billet 3SP Standard 150mm System 2
  • Hot Rolled Steel Billet 3SP Standard 150mm System 3
  • Hot Rolled Steel Billet 3SP Standard 150mm System 4
  • Hot Rolled Steel Billet 3SP Standard 150mm System 5
  • Hot Rolled Steel Billet 3SP Standard 150mm System 6
Hot Rolled Steel Billet 3SP Standard 150mm

Hot Rolled Steel Billet 3SP Standard 150mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Hot Rolled Steel Billet 3SP Standard 150mm

  RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Description of Hot Rolled Steel Billet 3SP Standard 150mm
Prepainted Rolled steel Coil is a kind of coated steel coil/sheet. With the cold rolled steel of different strength and thickness as substrate, it is produced through applying Al-Zn coat on both faces by hot dip process. In its coating, Al accounts for about 55%, Si 1.6%, while the remaining is Zn. Aluminum zinc coils enjoys both the physical protective feature and durability of Al and the electrochemical protective property of Zn. And its surface has bright silver color and regular embossed-like figure, which are highly decorative. RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Main Feature of Hot Rolled Steel Billet 3SP Standard 150mm

1.Corrosion resistance: It mainly depends on the zinc protection. When the zinc being worn,

2. Heat resistance: steel sheet has excellent heat resistance, can withstand high temperatures over 300 centigrade, and is similar with aluminized steel high temperature oxidation resistance. It often used in chimney pipes, ovens, fluorescent lighting device and the device cover. 
3. Heat reflective: Galvanized steel plate heat-reflective high rate is twice as galvanized steel, often used to make insulation materials.  RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing


Applications of Hot Rolled Steel Billet 3SP Standard 150mm
1. Construction and building: roofing; ventilating duct; handrail; partition panel;etc.

2. Electric appliance: refrigerator; washing machine; refrigerator; DVD;etc.

3.Transportation: oil tank; gas tank;road sign; etc.
4.Agriculture constructions :barn; etc.RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

5.Others:vending machine; game machine; auto parts spare parts etc.  

 RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

 

Specifications of Hot Rolled Steel Billet 3SP Standard 150mm

Product

Hot Rolled Steel Billet 3SP Standard 150mm

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.5-3.0mm

Width

700-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

AZ30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled,RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

25MT max

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

 

FAQ of Hot Rolled Steel Billet 3SP Standard 150mm

We have organized several common questions for our clients,may help you sincerely:

1. What is the minimum order quantity ? 

Our MOQ is 100 mt for each size each specification. Usually we can offer discount if can buy large QTY once. RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

2. How long can we receive the product after ordering?

Our general delivery time is 30 days after confirmation, but so some special orders, we have offer special delivery time

3. How to guarantee the quality of the products?

We have established the international advanced quality management system ,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

4. What is the payment?

We accept T/T, L/C


Q: How are steel billets labeled for identification purposes?
Steel billets are typically labeled for identification purposes through various methods such as stamping or tagging, where important information such as size, grade, heat number, and production date are marked directly on the billet or attached to it. This labeling allows for easy traceability and identification throughout the manufacturing and supply chain processes.
Q: How are steel billets used in the manufacturing of construction formwork?
Steel billets are an essential component used in the manufacturing of construction formwork. Formwork refers to the temporary or permanent molds or structures used to hold and support freshly poured concrete until it sets and hardens. Steel billets, which are semi-finished steel products, are used as the raw material for creating the formwork. These billets are typically made by casting molten steel into a rectangular or square shape and then allowing it to cool and solidify. The resulting billets are then further processed to create the specific formwork components. The steel billets are first cut into smaller sections according to the desired dimensions of the formwork. These sections are then shaped and welded together to form the framework of the formwork. The billets provide the necessary strength and durability to withstand the weight of the concrete and any external forces exerted during construction. Once the framework is completed, additional components such as panels, braces, and tie rods are attached to it, also made from steel billets. These components provide stability and help distribute the load evenly across the formwork. Steel billets are the preferred material for constructing formwork due to their high strength-to-weight ratio and excellent resistance to corrosion. They can withstand the pressure exerted by the concrete during pouring and curing, ensuring the formwork remains intact and stable. Additionally, steel billets can be easily molded and shaped into various configurations, allowing for flexibility and customization in formwork design. In summary, steel billets play a crucial role in the manufacturing of construction formwork. They provide the necessary strength, durability, and stability required to support freshly poured concrete until it sets and hardens. By utilizing steel billets, formwork manufacturers can create robust and reliable structures that contribute to efficient and safe construction processes.
Q: What is the role of steel billets in the manufacturing of construction excavators?
The significance of steel billets in the production of construction excavators cannot be overstated. These semi-finished steel products, shaped like rectangular solids, are vital for creating various components of excavators. An essential characteristic of steel billets is their exceptional strength and durability. The construction industry requires materials that can endure heavy loads, intense pressure, and harsh working conditions. Steel billets possess these qualities, making them perfect for fabricating excavators that can withstand the demanding nature of construction sites. Throughout the manufacturing process, steel billets are heated and formed into different parts of the excavator, such as the mainframe, booms, arms, and buckets. These components necessitate high-strength materials to guarantee structural integrity and longevity. Moreover, steel billets offer the advantage of precise customization and fabrication. Manufacturers can mold and shape the billets into specific sizes and dimensions, tailored to the requirements of different excavator parts. This flexibility ensures a seamless fit of the components, enhancing the overall performance and functionality of the machine. Furthermore, steel billets exhibit excellent weldability. Given the constant stress and movement excavators undergo, welding is a critical process for joining the various components. Steel billets facilitate strong and dependable welds, ensuring the structural soundness of the excavator and its ability to handle heavy-duty tasks. In conclusion, the role of steel billets in the manufacturing of construction excavators is indispensable. Their strength, durability, customizability, and weldability make them the ideal raw material for constructing robust and reliable machines, indispensable for the demanding nature of the construction industry.
Q: What are the specifications for stainless steel billets used in the marine industry?
Stainless steel billets used in the marine industry must adhere to specific specifications to ensure optimal performance and durability in harsh marine environments. These specifications typically include the following: 1. Material Composition: Stainless steel billets for marine applications are usually made from austenitic stainless steel grades such as 304, 316, or 316L. These grades offer excellent corrosion resistance, high strength, and good weldability. 2. Corrosion Resistance: The stainless steel billets must have high resistance to corrosion caused by saltwater, moisture, and other aggressive marine elements. They should exhibit excellent resistance to pitting, crevice corrosion, and chloride-induced stress corrosion cracking. 3. Mechanical Properties: The billets should possess sufficient tensile strength, yield strength, and elongation to withstand the demanding conditions encountered in the marine industry. These properties ensure that the stainless steel can handle the heavy loads, vibrations, and impacts experienced at sea. 4. Heat Treatment: Proper heat treatment processes, such as annealing, may be required to enhance the stainless steel's mechanical properties and corrosion resistance. Heat treatment can also eliminate residual stresses and improve the material's toughness. 5. Surface Finish: The surface of the billets should be free from defects, such as cracks, pits, and inclusions, which could compromise the structural integrity or promote corrosion. A smooth, polished surface is often desired to minimize friction and facilitate easier cleaning. 6. Dimensional Tolerance: Stainless steel billets used in the marine industry must adhere to specific dimensional tolerances to ensure compatibility with other marine components and facilitate ease of manufacturing and assembly. 7. Certification: Billets for the marine industry may need to meet various certification standards, such as ASTM, ISO, or specific industry standards like the American Bureau of Shipping (ABS) or Det Norske Veritas Germanischer Lloyd (DNV-GL) certifications. These certifications ensure that the stainless steel meets the required quality and safety standards. Overall, the specifications for stainless steel billets used in the marine industry focus on corrosion resistance, mechanical properties, heat treatment, surface finish, dimensional tolerances, and adherence to relevant certifications. These specifications ensure that the stainless steel billets can withstand the harsh marine environment, prolonging the lifespan of marine structures and components.
Q: How are steel billets used in the manufacturing of marine equipment?
Steel billets are used in the manufacturing of marine equipment as they serve as raw materials that are subsequently forged or rolled into various components such as ship hulls, propeller shafts, and engine parts. These billets undergo a series of processes such as heating, rolling, and shaping to create the necessary strength and durability required for marine applications.
Q: How do steel billets differ from steel bars?
Steel billets and steel bars are both forms of semi-finished steel products, but they differ in terms of their size, shape, and production process. Steel billets are typically square or rectangular in shape and have a larger cross-sectional area compared to steel bars. They are produced through a casting process, where liquid steel is poured into molds and then allowed to solidify. On the other hand, steel bars are long, cylindrical shapes that are formed by rolling billets through a series of rolling mills. The rolling process increases the length and reduces the cross-sectional area of the steel, resulting in a more uniform shape and size.
Q: What is the maximum temperature that a steel billet can withstand?
The maximum temperature a steel billet can withstand is largely dependent on the specific type and grade of steel being used. However, as a general rule, most steels will lose their structural integrity and mechanical properties when exposed to temperatures above 800 degrees Celsius (1472 degrees Fahrenheit). At these elevated temperatures, steel experiences significant thermal expansion, resulting in distortion, warping, and eventual failure. In specialized applications, certain high-temperature alloys or superalloys have the ability to withstand even higher temperatures. These materials are purposefully designed to maintain their strength and durability under extreme heat, often surpassing 1000 degrees Celsius (1832 degrees Fahrenheit) or more. Nevertheless, it is crucial to understand that determining the maximum temperature a steel billet can endure should always involve consulting the technical data sheet specific to the material or seeking advice from experts in the field. Factors such as alloy composition, heat treatment, and intended usage can all contribute to establishing the maximum temperature limit for a steel billet.
Q: How are steel billets used in the production of railway parts?
The production of railway parts heavily relies on steel billets, which are essential raw materials. These billets are semi-finished steel products that are cast into specific shapes and sizes, usually square or rectangular. They serve as the initial stage in the manufacturing process for various railway components. One of the primary uses of steel billets in railway part production is for manufacturing rails. The billets are heated and then passed through rolling mills to shape them into the desired rail profile. This process, known as rolling, involves applying pressure to the billet, gradually elongating and shaping it into the rail section. The resulting rails are then cut to the required length and undergo further processes like heat treatment and finishing to improve their strength and durability. Apart from rails, steel billets are also vital in the production of other crucial railway components such as wheels, axles, and various structural parts. For instance, billets can be forged or machined to create wheel blanks, which are subsequently processed to achieve the final wheel shape. Similarly, billets can be used to manufacture axles by forging and machining them to meet the desired dimensions and specifications. Furthermore, steel billets can be employed in fabricating different structural parts used in railway infrastructure, including bridges, tunnels, and platforms. These billets are processed using various manufacturing techniques like casting, forging, or machining to produce the necessary components. In conclusion, steel billets play a crucial role in the production of railway parts. Whether it's manufacturing rails, wheels, axles, or structural components, these billets are the starting material that undergoes shaping, heat treatment, and finishing processes to create final railway components that ensure safe and efficient transportation.
Q: What are the main factors affecting the surface roughness of steel billets?
The surface roughness of steel billets can be influenced by several factors. Firstly, the quality of the raw materials used in the production of the billets plays a crucial role. If the steel used is of poor quality or contains impurities, it can result in a rougher surface finish. Secondly, the manufacturing process itself can impact the surface roughness. For instance, if the billets are not properly cooled or if there are inconsistencies in the temperature during the cooling process, it can lead to uneven surfaces and increased roughness. Furthermore, the machining operations performed on the billets can also contribute to their surface roughness. Factors such as the cutting speed, feed rate, and tool condition can affect the final surface finish. If the cutting parameters are set incorrectly or if the cutting tools are worn out, it can result in a rougher surface texture. Additionally, the lubrication and cooling methods used during machining can affect the surface roughness. Proper lubrication helps reduce friction and heat generation, resulting in smoother surfaces. Inadequate lubrication or cooling can cause increased friction, leading to rougher surfaces. Moreover, the maintenance and condition of the machinery used in the manufacturing process can impact the surface roughness. If the equipment is not well-maintained or if there are issues with the precision and stability of the machines, it can result in surface irregularities and roughness. Lastly, the handling and storage of the steel billets can also influence their surface roughness. If the billets are mishandled or exposed to harsh environmental conditions, such as moisture or extreme temperatures, it can lead to corrosion or surface damage, resulting in a rougher surface finish. Overall, the main factors affecting the surface roughness of steel billets include the quality of raw materials, the manufacturing process, machining operations, lubrication and cooling methods, machinery condition, and handling/storage practices. Understanding and controlling these factors are essential for achieving the desired surface finish in steel billet production.
Q: How do steel billets contribute to the infrastructure development sector?
Steel billets play a crucial role in the infrastructure development sector by serving as the foundation for various construction projects. These billets are used to produce structural steel products, such as beams, columns, and reinforcement bars, which are essential components in building bridges, highways, buildings, and other infrastructure projects. The strength and durability of steel billets make them ideal for withstanding heavy loads and adverse weather conditions, ensuring the long-term stability and safety of structures. Moreover, their versatility allows for easy fabrication and customization, enabling engineers and architects to design innovative and efficient solutions for infrastructure development. Overall, steel billets provide the necessary strength, reliability, and flexibility to support the growth and sustainability of the infrastructure development sector.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords