• Hot Rolled Steel Billet 3SP Standard 100mm System 1
  • Hot Rolled Steel Billet 3SP Standard 100mm System 2
  • Hot Rolled Steel Billet 3SP Standard 100mm System 3
  • Hot Rolled Steel Billet 3SP Standard 100mm System 4
  • Hot Rolled Steel Billet 3SP Standard 100mm System 5
  • Hot Rolled Steel Billet 3SP Standard 100mm System 6
Hot Rolled Steel Billet 3SP Standard 100mm

Hot Rolled Steel Billet 3SP Standard 100mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Hot Rolled Steel Billet 3SP Standard 100mm

  RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Description of Hot Rolled Steel Billet 3SP Standard 100mm
Prepainted Rolled steel Coil is a kind of coated steel coil/sheet. With the cold rolled steel of different strength and thickness as substrate, it is produced through applying Al-Zn coat on both faces by hot dip process. In its coating, Al accounts for about 55%, Si 1.6%, while the remaining is Zn. Aluminum zinc coils enjoys both the physical protective feature and durability of Al and the electrochemical protective property of Zn. And its surface has bright silver color and regular embossed-like figure, which are highly decorative. RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Main Feature of Hot Rolled Steel Billet 3SP Standard 100mm

1.Corrosion resistance: It mainly depends on the zinc protection. When the zinc being worn,

2. Heat resistance: steel sheet has excellent heat resistance, can withstand high temperatures over 300 centigrade, and is similar with aluminized steel high temperature oxidation resistance. It often used in chimney pipes, ovens, fluorescent lighting device and the device cover. 
3. Heat reflective: Galvanized steel plate heat-reflective high rate is twice as galvanized steel, often used to make insulation materials.  RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing


Applications of Hot Rolled Steel Billet 3SP Standard 100mm
1. Construction and building: roofing; ventilating duct; handrail; partition panel;etc.

2. Electric appliance: refrigerator; washing machine; refrigerator; DVD;etc.

3.Transportation: oil tank; gas tank;road sign; etc.
4.Agriculture constructions :barn; etc.RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

5.Others:vending machine; game machine; auto parts spare parts etc.  

 RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

 

Specifications of Hot Rolled Steel Billet 3SP Standard 100mm

Product

Hot Rolled Steel Billet 3SP Standard 100mm

Material Grade

SGCC / SGCH  / DX51D+AZ, etc

Thickness

0.5-3.0mm

Width

700-1500mm

Tolerance

Thickness: +/-0.02mm , Width:+/-2mm

Zinc-coating

AZ30-150g/m2

Technique

Raw material: Hot rolled steel coil --> Cold rolled_>hot dipped galvalume

Surface

Dried, Chromated, Unoiled,RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

Spangle

Regular spangle , small spangle, zero spangle

ID

508MM 610MM

Coil weight

25MT max

Export package

Cardboard inner sleeves, Waterproof paper, galvanized steel covered and steel strip packed

 

FAQ of Hot Rolled Steel Billet 3SP Standard 100mm

We have organized several common questions for our clients,may help you sincerely:

1. What is the minimum order quantity ? 

Our MOQ is 100 mt for each size each specification. Usually we can offer discount if can buy large QTY once. RAL Scale Z35 Prepainted Rolled Steel Coil for Construction Roofing

2. How long can we receive the product after ordering?

Our general delivery time is 30 days after confirmation, but so some special orders, we have offer special delivery time

3. How to guarantee the quality of the products?

We have established the international advanced quality management system ,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

4. What is the payment?

We accept T/T, L/C 

 

 


Q: Can steel billets be used for making sculptures?
Yes, steel billets can be used for making sculptures. Steel is a versatile material that offers strength, durability, and the ability to be shaped and molded into various forms. Many artists have embraced steel as a medium for creating sculptures due to its modern aesthetic and its ability to withstand outdoor conditions. By heating, cutting, and welding the steel billets, artists can transform them into unique and imaginative sculptures.
Q: How are steel billets used in the production of automotive exhaust systems?
Steel billets are an essential component in the production of automotive exhaust systems. These billets, which are solid blocks of steel, serve as the raw material for various parts and components of the exhaust system. The first step in using steel billets is to heat them in a furnace to a specific temperature in order to soften the steel and make it malleable. Once heated, the billets are then shaped and formed into different parts of the exhaust system, such as pipes, mufflers, and catalytic converters. This shaping process can be done through hot rolling, cold rolling, or extrusion, depending on the desired shape and properties of the component. After shaping, the steel billets are further processed to enhance their strength and durability. This can involve heat treatment processes like quenching and tempering, which improve the steel's hardness, toughness, and resistance to corrosion. These treatments ensure that the exhaust system components can withstand the harsh conditions they will be exposed to, such as high temperatures and corrosive gases. Once the steel billets have been shaped and treated, they are then assembled and welded together to form the final exhaust system. This involves joining the various components, such as pipes and mufflers, through welding techniques like arc welding or laser welding. These welding processes ensure that the components are securely connected, preventing any leaks or failures in the exhaust system. Overall, steel billets play a crucial role in the production of automotive exhaust systems by providing the necessary raw material for shaping and forming the various components. Their strength, durability, and resistance to high temperatures and corrosion make them an ideal choice for manufacturing exhaust systems that can withstand the demanding conditions of automotive use.
Q: How do steel billets contribute to the overall sustainability of a structure?
Steel billets contribute to the overall sustainability of a structure in several ways. Firstly, steel is a highly durable and long-lasting material, ensuring the longevity of the structure and reducing the need for frequent repairs or replacements. Additionally, steel is a recyclable material, meaning that steel billets can be melted down and reused in the production of new steel, reducing the demand for virgin materials and the energy required for their extraction and processing. Furthermore, steel has a high strength-to-weight ratio, allowing for lighter and more efficient structures that require fewer materials, resulting in reduced resource consumption and lower carbon emissions throughout the lifecycle of the structure. Overall, the use of steel billets in construction promotes sustainability by optimizing resource efficiency, minimizing waste, and extending the lifespan of structures.
Q: What is the average cost of transporting steel billets?
The average cost of transporting steel billets can vary depending on several factors. These factors include the distance of transportation, the mode of transportation (road, rail, sea, etc.), the quantity of steel billets being transported, and the current market conditions. On a general basis, the cost of transporting steel billets can range from $50 to $150 per metric ton. This cost typically includes the expenses related to loading and unloading the billets, transportation fees, insurance, and any additional charges such as customs fees or tolls. It is important to note that the cost can significantly differ for different modes of transportation. For example, transporting steel billets by road is generally more expensive compared to rail or sea transport due to higher fuel costs and limited capacity. Similarly, longer distances or remote locations may incur higher transportation costs due to increased logistics and infrastructure requirements. Moreover, market conditions and fluctuations in fuel prices can also impact the average cost. During periods of high demand or economic volatility, transportation costs may increase due to factors such as increased competition, fuel surcharges, or additional security measures. To get an accurate estimate for the average cost of transporting steel billets, it is recommended to obtain quotes from multiple transportation providers or consult industry-specific sources for up-to-date pricing information.
Q: What are the disadvantages of using steel billets?
There are several disadvantages of using steel billets in various industries. Firstly, steel billets are quite heavy and bulky, making them difficult to handle and transport. This can increase logistical challenges and costs, especially when large quantities of billets need to be moved. Secondly, steel billets require a significant amount of energy and resources to manufacture. The production process involves melting down iron ore and various additives, which consumes a substantial amount of energy and contributes to carbon emissions. This makes steel billets less environmentally friendly compared to other materials. Additionally, steel billets have limited versatility in terms of shape and size. Their initial form is typically a long, rectangular bar, which limits their applicability in certain industries that require complex or intricate shapes. This can lead to additional processing steps and costs to transform the billets into desired forms. Furthermore, steel billets have a high risk of surface defects and internal flaws. During the manufacturing process, impurities and non-uniformities can occur, leading to cracks, inclusions, or segregations within the billets. These defects can compromise the structural integrity and performance of the final product, potentially resulting in failures or safety risks. Lastly, steel billets are susceptible to corrosion, particularly in harsh or corrosive environments. This can significantly reduce their lifespan and necessitate frequent maintenance or protective coatings to prevent deterioration. The costs associated with corrosion prevention and maintenance can add up over time, making steel billets less cost-effective in certain applications. Overall, while steel billets are widely used due to their strength and durability, their disadvantages in terms of weight, energy consumption, limited versatility, potential defects, and susceptibility to corrosion should be taken into consideration when choosing the appropriate material for a specific application.
Q: How can the quality of steel billets be improved?
The quality of steel billets can be improved through various methods and techniques. Here are a few approaches that can help enhance the quality of steel billets: 1. Raw Material Selection: The quality of steel billets largely depends on the selection of raw materials. Choosing high-quality raw materials, such as high-grade iron ore and scrap metal, can significantly improve the quality of billets. 2. Melting and Refining: The melting and refining process plays a crucial role in improving steel billet quality. Utilizing advanced melting practices, such as electric arc furnaces (EAF) or induction furnaces, can help achieve a more homogeneous and controlled melting process, reducing impurities and achieving a desired chemical composition. 3. Deoxidation and Degassing: Proper deoxidation and degassing techniques should be employed to remove impurities and gases from the molten metal. This can be achieved by adding suitable deoxidizers and utilizing vacuum degassing processes that effectively remove unwanted gases, thereby enhancing the steel billets' quality. 4. Continuous Casting Process: Implementing a modern continuous casting process can significantly improve the quality of steel billets. Continuous casting ensures a more uniform structure, reduces segregation, and minimizes the formation of defects commonly associated with traditional ingot casting methods. 5. Heat Treatment: Applying suitable heat treatment processes, such as annealing, quenching, and tempering, can further enhance the mechanical properties and overall quality of steel billets. Heat treatment helps refine the microstructure, improving the steel's strength, hardness, and other desired characteristics. 6. Quality Control: Implementing a robust quality control system is crucial in ensuring the production of high-quality steel billets. Regular monitoring and testing should be conducted throughout the production process to identify and rectify any deviations or quality issues promptly. 7. Skillful Workforce: Employing a skilled and knowledgeable workforce is vital for improving the quality of steel billets. Well-trained technicians and operators can effectively implement various quality improvement techniques and address any production challenges that may arise. By incorporating these methods and techniques, steel manufacturers can enhance the quality of steel billets, resulting in improved mechanical properties, superior surface finish, and increased customer satisfaction.
Q: How do steel billets contribute to the manufacturing of HVAC systems?
Steel billets are used in the manufacturing of HVAC systems as they provide the raw material required for fabricating various components such as ductwork, heating coils, and air conditioning units. Billets are melted down and then shaped into the desired form, allowing manufacturers to create durable and sturdy components that can withstand the demanding conditions of HVAC systems. Additionally, steel billets offer excellent thermal conductivity, allowing for efficient heat transfer within the system, ultimately contributing to the overall performance and energy efficiency of HVAC systems.
Q: What are the different types of cutting techniques used for steel billets?
Different cutting techniques are employed for steel billets, depending on the specific requirements of the project. Several commonly used techniques include: 1. Sawing: This traditional and widely utilized method involves cutting through the steel billet using a saw blade. It can be done manually or with automated sawing machines, making it suitable for both small and large billets. 2. Flame Cutting: Also known as oxy-fuel cutting, this technique employs a flame torch to heat the steel to its kindling temperature. Then, a jet of oxygen is introduced to burn through the metal. It is frequently used for cutting thicker billets and can be performed manually or with CNC-controlled equipment. 3. Plasma Cutting: By utilizing a high-velocity jet of ionized gas, plasma cutting melts and blows away the steel. This technique is particularly effective for cutting billets with complex shapes or contours. It is often automated and produces clean and precise cuts. 4. Waterjet Cutting: This technique involves the use of a high-pressure jet of water combined with abrasive particles to cut through the steel billet. It is ideal for materials sensitive to heat, as it minimizes heat-affected zones. Waterjet cutting is capable of handling various thicknesses and shapes of billets. 5. Laser Cutting: Laser cutting employs a high-powered laser beam to melt and vaporize the steel, resulting in a clean and precise cut. It is highly accurate and suitable for cutting intricate shapes and designs. Laser cutting is commonly automated and widely used in industrial settings. Factors such as desired precision, speed, material thickness, and budget must be considered when selecting the most appropriate cutting technique for steel billets. Each technique has its own advantages and limitations, and choosing the right one can significantly impact the quality and efficiency of the cutting process.
Q: How are steel billets used in the manufacturing of hydraulic systems?
Steel billets are used in the manufacturing of hydraulic systems as they serve as the raw material for various components. Hydraulic systems require strong and durable parts to withstand the high pressures and forces involved. Steel billets, which are essentially semi-finished steel products, are first heated and then shaped into the desired form through processes like hot rolling or extrusion. These formed steel billets are then further processed to create different hydraulic system components such as cylinders, pistons, valves, and fittings. The use of steel billets provides several advantages in the manufacturing of hydraulic systems. Firstly, steel is known for its high strength and toughness, making it suitable for withstanding the extreme pressures and forces encountered in hydraulic systems. It also offers excellent resistance to corrosion, which is crucial considering the exposure to fluids and harsh environments in hydraulic systems. Furthermore, steel billets can be easily machined and welded, allowing for the creation of intricate and customized hydraulic components. The versatility of steel billets enables the production of various shapes and sizes required for different hydraulic system applications. Overall, steel billets play a vital role in the manufacturing of hydraulic systems by providing a strong, durable, and versatile material for the production of essential components. Their use ensures the reliability and efficiency of hydraulic systems, enabling them to perform their intended functions in various industries such as construction, manufacturing, and transportation.
Q: What is the role of steel billets in the production of valves and fittings?
Steel billets play a crucial role in the production of valves and fittings as they serve as the primary raw material for manufacturing these products. The billets are heated and then shaped and formed through various processes like forging, machining, and welding to create the desired valve or fitting. The high strength and durability of steel billets ensure the reliability and longevity of valves and fittings, making them essential components in industries such as oil and gas, water treatment, and manufacturing.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords