• Hot Rolled Square Steel Billet 3SP Standard 95mm System 1
  • Hot Rolled Square Steel Billet 3SP Standard 95mm System 2
  • Hot Rolled Square Steel Billet 3SP Standard 95mm System 3
  • Hot Rolled Square Steel Billet 3SP Standard 95mm System 4
  • Hot Rolled Square Steel Billet 3SP Standard 95mm System 5
  • Hot Rolled Square Steel Billet 3SP Standard 95mm System 6
Hot Rolled Square Steel Billet 3SP Standard 95mm

Hot Rolled Square Steel Billet 3SP Standard 95mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Hot Rolled Square Steel Billet 3SP Standard 95mm  

 Hot Rolled Square Steel Billet 3SP Standard 95mm

Description of Hot Rolled Square Steel Billet 3SP Standard 95mm  

PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate,  through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method), 

and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90 

 

Hot Rolled Square Steel Billet 3SP Standard 95mm

Main Feature of Hot Rolled Square Steel Billet 3SP Standard 95mm  

1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.

 

Applications of Hot Rolled Square Steel Billet 3SP Standard 95mm 

1) Automotive bodies: filters, fuel tanks, etc.

2) Construction materials: roofings, welding pipes,

3) Electric and electronic appliances: computer cans, etc.

4) Steel cans: containers, etc.

5) Steel furniture: washing machines, refrigerators, microwaves, etc.

6) Drums

7) Office equipment: printer, recorders, etc.

8) Motors and transformers

 Hot Rolled Square Steel Billet 3SP Standard 95mm

Specifications of Hot Rolled Square Steel Billet 3SP Standard 95mm  

Classified symbolYield Point Minimum N/mm2Tensile Strength MinimumElongation Minimum %Application
N/mm2Nominal Thickness mm (t)
JISYogic
0.25-0.40.4-0.60.6-1.01.0-1.6
G3312specification
CGCCCGCC-205-270-20-21-24-24Commercial
CGCDCGCD---270---273132Drawing
---CG34024534020202020Structural
CGC400CG40029540016171818Structural
CGC440CG44033544014151618Structural
CGC490CG49036549012131416Structural
CGC570CG570560570------------Structural









ASTM DesignationYield Point MinimumTensile Strength MinimumElongation Minimum %Application
Q/BQB 445-2004(China standard)ASM A653/A653MJISG 3312
ksi(MPa)ksi(MPa)
TDC51D+Z(CS TYPE A+Z)CGCC
A653(M)-99 CS TYPE A,B,C---------Commercial
TDC52D+Z
CGCD
A653(M)-99 FS---------Lock Forming
TS250GD+Z(G250+Z)-
A653(M)-99 DS---------Drawing
TS300GS+Z(G300+Z)CGC 400
A653(M)-99 SS Grade33(230)33(230)45(310)20Structural
TS350GD+Z(G350+Z)CGC490
A653(M)-99 SS Grade37(255)37(255)52(360)18Structural
TS550GD+Z(G550+Z)CGC570
A653(M)-99 SS Grade40(275)40(275)55(380)16Structural



A653(M)-99 SS Grade50(345)50(345)65(450)12Structural



A653(M)-99 SS Grade80(550)80(550)82(570)---Structural



FAQ of Hot Rolled Square Steel Billet 3SP Standard 95mm  

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  1, ISO, BV, CE, SGS approved.
  2, Competitive price and quality. 
  3, Efficient service team online for 24 hours. 
  4, Smooth production ability(50000tons/month) .
  5, quick delivery and standard exporting package. 
  6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc .


 



Q: Billet heating furnace prices?
The reheating furnace control mode according to the different tonnage, heating medium, price range, or recommendations according to your requirements, find good few industry units do offer the program, compared to eradicate the solution and quotation.
Q: How are steel billets used in the production of shipbuilding components?
Steel billets are essential in the production of shipbuilding components as they serve as the primary raw material. Shipbuilding components require a high level of strength, durability, and corrosion resistance, all of which can be achieved through the use of steel billets. Firstly, steel billets are heated and then passed through a series of rolling processes to produce various shapes and sizes of steel plates, beams, and bars. These components are crucial in the construction of the ship's hull, superstructure, and other structural components. For example, steel plates are used to form the ship's outer shell, while beams and bars are utilized to provide support and stability. Furthermore, steel billets can be forged or machined to create specialized shipbuilding components such as propeller shafts, rudder stocks, and engine mounts. These components play vital roles in the ship's propulsion system, steering mechanism, and overall functionality. Additionally, steel billets can be used to manufacture pipes and tubes that are crucial for the ship's plumbing, ventilation, and fuel systems. The use of steel billets in shipbuilding ensures the vessels are built to withstand the harsh marine environment, including extreme weather conditions and corrosive seawater. Steel is known for its high strength-to-weight ratio, making it an ideal choice for constructing large and sturdy ships. Moreover, steel is easily weldable, allowing for efficient assembly and fabrication processes during ship construction. Overall, steel billets are a fundamental component in shipbuilding, providing the necessary strength, durability, and corrosion resistance required for the construction of various ship components. From the hull and superstructure to specialized parts, steel billets are indispensable in the production of shipbuilding components.
Q: How do steel billets contribute to the overall strength of a finished product?
Steel billets are an essential component in the manufacturing process of various steel products, and they play a crucial role in determining the strength of the finished product. The strength of a final steel product is primarily dependent on the quality of the steel billets used. Firstly, steel billets are made by continuously casting molten steel into solid blocks or forms. This process ensures that the steel billets have a consistent and uniform structure, which is vital for maintaining the overall strength of the finished product. The uniformity of the steel billets allows for a more even distribution of stress and load-bearing capacity throughout the final product. Moreover, steel billets are usually made from high-quality steel alloys that are specifically chosen for their superior strength properties. These alloys typically contain elements such as carbon, manganese, and other alloying elements that enhance the overall strength and hardness of the steel. By using high-quality steel billets, manufacturers are able to produce finished products that exhibit excellent tensile and yield strength, making them more resistant to deformation, bending, and breaking. Additionally, steel billets undergo various heat treatment processes, such as quenching and tempering, which further enhance their strength. Quenching involves rapidly cooling the billets to increase their hardness, while tempering reduces the brittleness and improves their toughness. These heat treatment processes result in steel billets with improved mechanical properties, including higher yield strength and improved resistance to fatigue and impact. Furthermore, the size and shape of steel billets also contribute to the overall strength of the finished product. The dimensions of the billets determine the final dimensions of the product, and a larger billet size allows for a more substantial and stronger end product. Similarly, the shape of the billets can be optimized to improve the load-bearing capacity and structural integrity of the finished product. In conclusion, steel billets are critical to the overall strength of a finished product. Through their uniform structure, high-quality alloys, heat treatment processes, and optimized size and shape, steel billets provide the necessary foundation for the production of strong and durable steel products. Selecting the right steel billets and ensuring their quality throughout the manufacturing process are vital steps in creating a finished product with exceptional strength and performance.
Q: How are steel billets used in the production of automotive suspension components?
Due to their strength, durability, and malleability, steel billets play a crucial role in manufacturing automotive suspension components. Billets, which are semi-finished steel products, are shaped into specific forms like bars or rods through a process called hot rolling. When it comes to automotive suspension components, the initial step involves heating the steel billets to a high temperature. Subsequently, they are passed through a series of rollers to achieve the desired shape, such as coil springs, shock absorber rods, or stabilizer bars. This hot rolling process refines the grain structure of the steel, resulting in improved mechanical properties. The utilization of steel billets in suspension components is vital because they provide the necessary strength and stiffness to withstand the various forces and loads faced during vehicle operation. For instance, coil springs bear the weight of the vehicle and ensure a comfortable ride by absorbing impacts and vibrations. Steel billets are preferred for automotive suspension components due to their high tensile strength, which enables them to endure heavy loads and maintain their shape over extended periods. Moreover, the malleability of steel allows for easy forming and shaping into intricate geometries, ensuring precise fit and functionality within the suspension system. Furthermore, steel billets offer excellent fatigue resistance, which is crucial for suspension components as they experience repetitive loading and unloading throughout the vehicle's lifespan. This fatigue resistance helps prevent failures and ensures a suspension system that is long-lasting and dependable. In conclusion, incorporating steel billets into the production of automotive suspension components is essential for achieving the necessary strength, durability, and performance required for safe and comfortable vehicle operation.
Q: How are steel billets used in the manufacturing of medical equipment?
Medical equipment manufacturing relies heavily on steel billets, which serve as a crucial raw material. These semi-finished steel products act as a starting point for various manufacturing processes. Within the medical equipment industry, steel billets are indispensable for producing a wide range of components and devices that are essential for healthcare professionals and patients. To begin with, stainless steel casting is a common process used to transform steel billets into stainless steel. This material is highly sought after in medical equipment manufacturing due to its exceptional corrosion resistance, durability, and hygienic properties. Surgical instruments like scalpels, forceps, and scissors, as well as implantable devices such as orthopedic implants, pacemakers, and stents, frequently utilize stainless steel. Moreover, precision machining is another method employed to manufacture medical equipment components from steel billets. By machining these billets into various shapes and sizes, connectors, valves, brackets, and frames for medical devices and equipment can be produced. The use of precision machining ensures that these components meet the stringent quality and dimensional requirements necessary for medical applications. Additionally, steel billets are utilized in the production of casings and enclosures for medical equipment. These components provide crucial protection and support for sensitive internal components, ensuring the durability and longevity of medical devices. Steel billets are commonly employed in creating casings for devices such as X-ray machines, CT scanners, and MRI machines, as well as smaller equipment like infusion pumps and monitors. Overall, steel billets play an essential role in medical equipment manufacturing by providing the necessary raw material for the production of components, casings, and instruments. The inherent properties of steel, including strength, durability, and corrosion resistance, make it an ideal material for medical applications. The utilization of steel billets guarantees the production of high-quality, reliable, and safe medical equipment, which is crucial for the healthcare industry.
Q: What are the different types of steel billet inspection equipment?
The manufacturing industry utilizes various types of steel billet inspection equipment to guarantee the quality and integrity of the billets before further processing. These equipment are specifically designed for this purpose. 1. High-frequency sound waves are employed by Ultrasonic Testing (UT) Equipment to detect internal flaws or defects in the steel billets. It can identify cracks, voids, and other imperfections that may impact the final product's strength and performance. 2. Magnetic Particle Inspection (MPI) Equipment utilizes a magnetic field and specially formulated particles to identify surface and near-surface defects in the steel billets. It can uncover cracks, seams, and other imperfections that may not be visible to the naked eye. 3. Eddy Current Testing (ECT) Equipment uses electromagnetic induction to identify surface cracks and defects in the steel billets. It can detect variations in electrical conductivity caused by localized defects or changes in material properties. 4. Visual Inspection Equipment makes use of magnifying glasses, microscopes, and cameras to visually examine the steel billets for surface defects, irregularities, or other visual abnormalities. This equipment is often used together with other inspection methods for a comprehensive analysis. 5. Dimensional Measurement Equipment is employed to measure the dimensional accuracy and consistency of the steel billets. It includes tools such as calipers, micrometers, and laser scanners to ensure that the billets meet the required specifications and tolerances. 6. Surface Roughness Measurement Equipment quantifies the surface finish of the steel billets. It utilizes a stylus or laser to measure surface irregularities, providing crucial information about the billet's suitability for further processing. 7. X-ray Testing Equipment uses electromagnetic radiation to penetrate the steel billets and detect internal defects such as cracks, voids, or inclusions. This method is particularly effective for larger billets or when a comprehensive assessment of the internal structure is necessary. These are some of the commonly utilized steel billet inspection equipment in the manufacturing industry. Each type of equipment plays a vital role in ensuring that the steel billets meet the required quality standards and are appropriate for further processing into various end products.
Q: What is the role of steel billets in the manufacturing of storage tanks?
Steel billets play a crucial role in the manufacturing of storage tanks as they serve as the primary raw material for constructing the tank's structural framework. These billets are melted and poured into molds to create the desired tank shape, providing strength and durability to withstand the pressure and weight of various stored materials. Additionally, steel billets can be easily welded and shaped, allowing for customization and efficient assembly of storage tanks.
Q: How are steel billets used in the manufacturing of industrial machinery parts?
Steel billets are an essential component in the manufacturing of industrial machinery parts due to their unique properties and versatility. These billets are semi-finished steel products that are typically cast in a square or rectangular shape. They serve as the starting material for various industrial machinery parts, including gears, shafts, pistons, and other critical components. The first step in utilizing steel billets is to heat them to a specific temperature, which allows for easier manipulation and shaping. Once heated, the billets undergo a process called hot rolling, where they are passed through a series of rollers to reduce their cross-sectional area and increase their length. This process not only enhances the strength and durability of the steel but also refines its microstructure, resulting in improved mechanical properties. After hot rolling, the steel billets are typically further processed through machining operations such as cutting, drilling, milling, and grinding to achieve the desired dimensions and specifications required for specific machinery parts. These operations ensure precision and accuracy, allowing for seamless integration of the parts into the overall machinery assembly. Steel billets are particularly favored in the manufacturing of industrial machinery parts due to their high strength, toughness, and resistance to wear and tear. Their excellent machinability enables complex designs and intricate patterns to be achieved, ensuring optimal functionality and performance of the machinery. Moreover, steel billets can be easily welded, making them suitable for joining multiple parts together to create more substantial and robust structures. In conclusion, steel billets play a crucial role in the manufacturing of industrial machinery parts. By providing a strong, durable, and versatile starting material, they enable the creation of precise and reliable components that ensure the smooth operation of industrial machinery in various sectors such as manufacturing, construction, and transportation.
Q: What are the main factors affecting the creep resistance of steel billets?
The creep resistance of steel billets is determined by several main factors, including temperature, stress level, and alloy composition. Temperature plays a crucial role in determining the material's resistance to creep deformation. As the temperature increases, the atomic diffusion becomes more active, leading to enhanced creep deformation. Higher temperatures can also result in the formation of voids and cracks, weakening the billet's resistance to creep. The stress level applied to the steel billet also significantly affects its creep resistance. Higher stresses promote dislocation movement within the crystal lattice, increasing the rate of creep. Additionally, stress concentration at defects like voids or impurities can accelerate creep deformation. Therefore, it is crucial to control the stress level to maintain the billet's creep resistance. The alloy composition of the steel billet is another critical factor that influences its creep resistance. Different alloying elements can alter the material's microstructure, impacting its creep properties. For example, elements like chromium, molybdenum, and vanadium can form stable carbides that hinder dislocation movement and improve creep resistance. On the other hand, elements like sulfur or phosphorus can promote grain boundary sliding and reduce creep resistance. To enhance the creep resistance of steel billets, manufacturers must carefully control temperature, stress level, and alloy composition. By doing so, they can ensure that the billets are suitable for various applications.
Q: What are the different surface treatments for steel billets?
The different surface treatments for steel billets include hot rolling, cold rolling, shot blasting, and pickling.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords