• Hot Rolled Square Steel Billet 3SP Standard 160mm System 1
  • Hot Rolled Square Steel Billet 3SP Standard 160mm System 2
  • Hot Rolled Square Steel Billet 3SP Standard 160mm System 3
  • Hot Rolled Square Steel Billet 3SP Standard 160mm System 4
  • Hot Rolled Square Steel Billet 3SP Standard 160mm System 5
  • Hot Rolled Square Steel Billet 3SP Standard 160mm System 6
Hot Rolled Square Steel Billet 3SP Standard 160mm

Hot Rolled Square Steel Billet 3SP Standard 160mm

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
2000 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Structure of Hot Rolled Square Steel Billet 3SP Standard 160mm  

 Hot Rolled Square Steel Billet 3SP Standard 160mm

Description of Hot Rolled Square Steel Billet 3SP Standard 160mm  

PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate,  through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method), 

and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90 

 

Hot Rolled Square Steel Billet 3SP Standard 160mm

Main Feature of Hot Rolled Square Steel Billet 3SP Standard 160mm  

1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.
Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.

 

Applications of Hot Rolled Square Steel Billet 3SP Standard 160mm 

1) Automotive bodies: filters, fuel tanks, etc.

2) Construction materials: roofings, welding pipes,

3) Electric and electronic appliances: computer cans, etc.

4) Steel cans: containers, etc.

5) Steel furniture: washing machines, refrigerators, microwaves, etc.

6) Drums

7) Office equipment: printer, recorders, etc.

8) Motors and transformers

 Hot Rolled Square Steel Billet 3SP Standard 160mm

Specifications of Hot Rolled Square Steel Billet 3SP Standard 160mm  

Classified symbolYield Point Minimum N/mm2Tensile Strength MinimumElongation Minimum %Application
N/mm2Nominal Thickness mm (t)
JISYogic
0.25-0.40.4-0.60.6-1.01.0-1.6
G3312specification
CGCCCGCC-205-270-20-21-24-24Commercial
CGCDCGCD---270---273132Drawing
---CG34024534020202020Structural
CGC400CG40029540016171818Structural
CGC440CG44033544014151618Structural
CGC490CG49036549012131416Structural
CGC570CG570560570------------Structural









ASTM DesignationYield Point MinimumTensile Strength MinimumElongation Minimum %Application
Q/BQB 445-2004(China standard)ASM A653/A653MJISG 3312
ksi(MPa)ksi(MPa)
TDC51D+Z(CS TYPE A+Z)CGCC
A653(M)-99 CS TYPE A,B,C---------Commercial
TDC52D+Z
CGCD
A653(M)-99 FS---------Lock Forming
TS250GD+Z(G250+Z)-
A653(M)-99 DS---------Drawing
TS300GS+Z(G300+Z)CGC 400
A653(M)-99 SS Grade33(230)33(230)45(310)20Structural
TS350GD+Z(G350+Z)CGC490
A653(M)-99 SS Grade37(255)37(255)52(360)18Structural
TS550GD+Z(G550+Z)CGC570
A653(M)-99 SS Grade40(275)40(275)55(380)16Structural



A653(M)-99 SS Grade50(345)50(345)65(450)12Structural



A653(M)-99 SS Grade80(550)80(550)82(570)---Structural



FAQ of Hot Rolled Square Steel Billet 3SP Standard 160mm  

We have organized several common questions for our clients,may help you sincerely: 

1. How Can I Visit There?
  Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly   welcome to visit us!  
2. How Can I Get Some Sample?
  We are honored to offer you sample.  
3. Why choose CNBM?
  1, ISO, BV, CE, SGS approved.
  2, Competitive price and quality. 
  3, Efficient service team online for 24 hours. 
  4, Smooth production ability(50000tons/month) .
  5, quick delivery and standard exporting package. 
  6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc.

Q:How are steel billets used in the production of industrial valves?
Steel billets are used in the production of industrial valves as they serve as the raw material for shaping and forming various valve components, such as bodies, bonnets, stems, and discs. Through machining, forging, and welding processes, the steel billets are transformed into the required shapes and sizes, ensuring the strength and durability of the valves.
Q:Can steel billets be used in the production of pipes?
Indeed, the utilization of steel billets is possible in the fabrication of pipes. Steel billets serve as the primary material for the creation of diverse steel goods, comprising pipes. The procedure entails subjecting the steel billets to elevated temperatures and subsequently molding them into pipes utilizing distinct techniques like hot rolling, cold rolling, or extrusion. Steel billets furnish the essential strength, durability, and consistency necessary for the manufacturing of pipes. Furthermore, they can undergo further processing and treatment to fulfill specific prerequisites such as resistance to corrosion or improved mechanical properties. Thus, steel billets assume a crucial function in pipe production and find extensive application in the steel industry for this very purpose.
Q:What are the different packaging options available for steel billets?
There are several different packaging options available for steel billets, depending on the specific requirements and preferences of the customer. Here are some common packaging options: 1. Wooden Crates: Steel billets can be packaged in wooden crates for protection during transportation and storage. These crates are sturdy and provide a barrier against moisture and physical damage. 2. Steel Frames: Another option is to package the steel billets in steel frames. These frames are typically made of strong and durable steel bars that securely hold the billets in place, providing stability and protection. 3. Plastic Wrapping: Steel billets can also be packaged using plastic wrapping. This method involves wrapping the billets tightly in plastic film, which helps to protect them from dust, moisture, and scratches. 4. Wire Binding: Wire binding is a common packaging option for steel billets. It involves using steel wires to bundle the billets together, providing stability and preventing movement during transportation. 5. Customized Packaging: Some customers may require customized packaging options for their steel billets. This can include using specific materials, such as foam or cardboard, to provide additional protection or incorporating branding elements onto the packaging. Ultimately, the choice of packaging option will depend on factors such as the size and weight of the steel billets, the mode of transportation, and the specific requirements of the customer. It is important to consider factors such as protection, stability, ease of handling, and cost-effectiveness when selecting the most suitable packaging option for steel billets.
Q:What is the chemical composition of steel billets?
Steel billets are primarily composed of iron, with varying amounts of carbon and other alloying elements such as manganese, silicon, and trace amounts of sulfur and phosphorus.
Q:What are the main challenges in the storage of steel billets?
The main challenges in the storage of steel billets include the need for proper space allocation, adequate handling equipment, protection against corrosion and rust, and maintaining optimal temperature and humidity levels. Additionally, ensuring proper inventory management and efficient transportation of the billets can also be challenging.
Q:What are the specifications for alloy steel billets used in the defense industry?
The specifications for alloy steel billets used in the defense industry vary depending on the specific application and requirements of each project. However, there are certain common specifications that are typically followed. Firstly, the alloy steel billets used in the defense industry must meet stringent material standards and be certified to specific military or industry specifications. These standards often include requirements for the chemical composition, mechanical properties, and heat treatment of the alloy steel. The chemical composition of the alloy steel billets is crucial, as it determines the material's strength, hardness, and resistance to corrosion and high temperatures. The specific composition may vary depending on the intended use, but common alloying elements include chromium, molybdenum, vanadium, and nickel. Additionally, the carbon content is carefully controlled to achieve the desired strength and toughness. In terms of mechanical properties, alloy steel billets for defense applications generally need to have high strength, toughness, and impact resistance. They should be able to withstand extreme conditions, including high pressure, shock, and vibrations. The billets may undergo specific heat treatments, such as quenching and tempering, to achieve the desired mechanical properties. The dimensional specifications for alloy steel billets used in the defense industry are also crucial. They must meet precise size and shape tolerances, as well as surface finish requirements, to ensure compatibility with the manufacturing processes and final products. Furthermore, the billets may need to be certified to specific industry or military standards, such as MIL-STD or ASTM specifications, to ensure their suitability and reliability for defense applications. These standards define the testing methods, quality control requirements, and performance criteria that the alloy steel billets must meet. Overall, the specifications for alloy steel billets used in the defense industry encompass a range of factors, including chemical composition, mechanical properties, dimensional tolerances, and adherence to industry or military standards. These specifications are essential to ensure the performance, durability, and safety of the final defense products.
Q:How are steel billets tested for internal defects?
Steel billets are tested for internal defects using non-destructive testing methods such as ultrasound, magnetic particle inspection, and eddy current testing. These techniques allow for the detection of cracks, voids, and other imperfections within the billet without causing any damage to the material.
Q:How are steel billets tested for strength?
To ensure the quality and appropriateness of steel billets for different uses, they undergo various strength tests. One commonly employed method is the tensile strength test, which involves applying a controlled pulling force to a sample of the billet until it breaks. The maximum force exerted during this test determines the billet's tensile strength. Another crucial test is the hardness test, which evaluates the billet's resistance to indentation. This procedure utilizes a hardness tester that applies a known force to the billet's surface and measures the resulting indentation's depth. The hardness value obtained from this test aids in determining the billet's strength and its ability to endure wear and tear. Additionally, steel billets may also undergo impact testing, in which a pendulum strikes the billet, measuring the energy absorbed during fracture. This test assesses the billet's toughness and its capacity to withstand sudden shocks or impacts. Moreover, ultrasonic testing is frequently conducted to identify any hidden flaws or inconsistencies within the billet. This non-destructive testing method employs high-frequency sound waves to detect internal defects like cracks, voids, or inclusions that may weaken the billet and jeopardize its strength. By combining these tests with other quality control measures, steel billets are thoroughly examined for strength and suitability in various industrial applications, including construction, automotive, and manufacturing.
Q:How are steel billets made?
Steel billets are made through a process called casting. It starts with raw materials such as iron ore, coal, and limestone being melted in a blast furnace to produce molten iron. This molten iron is then further refined in a basic oxygen furnace or an electric arc furnace to adjust its composition and remove impurities. Once the desired composition is achieved, the molten iron is poured into a continuous casting machine. This machine consists of a water-cooled copper mold that shapes the molten iron into a solid billet. As the molten iron is poured into the mold, it rapidly cools and solidifies, forming a continuous length of solid steel. The billet is then cut to the desired length and transferred to a storage area to cool down further before further processing. The cooling process is crucial as it helps in improving the billet's internal structure and overall quality. After cooling, the steel billets can undergo various treatments such as heat treatment or surface conditioning to enhance their mechanical properties and surface finish. They can also be further processed into different shapes and sizes through rolling, forging, or extrusion to meet specific customer requirements. Overall, the production of steel billets involves melting the raw materials, refining the molten iron, casting it into a continuous mold, and subsequently cooling and processing the solid billets. This process ensures the production of high-quality steel billets that serve as crucial building blocks for various industries such as construction, automotive, and manufacturing.
Q:Are steel billets affected by extreme temperatures?
Yes, steel billets can be affected by extreme temperatures. High temperatures can cause the billets to soften and become more malleable, making them easier to shape or deform. On the other hand, extremely low temperatures can make the steel brittle and prone to cracking or fracturing. Therefore, it is important to carefully control and monitor the temperature conditions during the production and processing of steel billets.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords