Grade SUS410 Stainless Steel Round Bar with Certification
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 3 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Grade SUS410 Stainless Steel Round Bar with Certification
Details Information of Grade SUS410 Stainless Steel Round Bar with Certification
Name | SUS410 Stainless Steel |
Shape | Round Bar/Square Bar/Flat Bar/Plate/Wire |
Standard | GB/ASTM/SAE/AISI/DIN/JIS/EN/BS |
Surface Treatment: | Black/Peeling/Polished/Machined |
Delivery Condition: | Hot Rolled or Forged/Peeled or Black Surface |
Test | SGS/UT 100% Elements Testing |
Certificate: | ISO/Mill Certificate |
Service: | 24 hours online service / |
more than 20 years trading and manufacture | |
Quality Assurance: | the third party inspection, such as SGS, BV, TUV…etc. is acceptable |
Packaging Details: | Seaworthy Packaging or as per customer's packing instruction |
Carbon structure round bar | Q195 Q235A Q235B 10# 20#-55# S45CB |
Low alloy high strength round bar | Q345A/Q345C/Q345D Q345B Q345E |
Alloy structure round bar | SAE51B20 20Cr 40Cr 40CrV 20CrMo/30CrMo/35CrMo/42CrMo 20CrMoA/30CrMoA/35CrMoA/42CrMoA/42Cr ML20CrMo/ML30CrMo/ML35CrMo/ML42CrMo B7/SCM435-440 20MnTiB 20CrMnMo 20CrMoH 42CrMoH 40MnB/40MnBH 30Mn2-40Mn2 27SiMn 50CrVA 30CrMnTi |
Pinion steel | 20CrMnTi 20CrMnTiH 20CrMnTiHCS/20CrMnTiHLD Q20CrMnTi-1/Q20CrMnTi-2 |
Sucker rod | 20-35CrMoA |
Free-cutting steel | GT1215S |
Spring steel | 60Si2MnA 65Mn |
Ball bearing steel | GCr15 |
Chemical Composition of Grade SUS410 Stainless Steel Round Bar with Certification
C | Si | Mn | P | S | Cr | Ni | Cu |
0.17-0.24 | 0.17-0.37 | 0.35-0.65 | ≤0.035 | ≤0.035 | ≤0.25 | ≤0.25 | ≤0.25 |
Tensile strength (σb/MPa) | Yield strength (σb/MPa) | Elongation (δ5/%) |
≥410(42) | ≥245(25) | ≥25 |
Company Introduction of Grade SUS410 Stainless Steel Round Bar with Certification
CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.
With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.
Certificates of Grade SUS410 Stainless Steel Round Bar with Certification
Packaging & Delivery of Grade SUS410 Stainless Steel Round Bar with Certification
Packaging Detail | Sea worthy packing /as per customer's packing instruction |
Delivery Detail | 15 ~ 40 days after receiving the deposit |
Products show of Grade SUS410 Stainless Steel Round Bar with Certification
FAQ
Are you a trading company or manufacturer? | Manufacturer |
What’s the MOQ? | 3 metric ton |
What’s your delivery time? | 15-35 days after downpayment received |
Do you Accept OEM service? | Yes |
what’s your delivery terms? | FOB/CFR/CIF |
What's the Payment Terms? | 30% as deposit,70% before shipment by T/T |
Western Union acceptable for small amount. | |
L/C acceptable for large amount. | |
Scrow ,Paybal,Alipay are also ok | |
Why choose us? | Chose happens because of quality, then price, We can give you both. Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals. |
What's your available port of Shipment? | Main Port, China |
What’s your featured services? | Our service formula: good quality+ good price+ good service=customer's trust
|
Where are your Market? | Covering more than 160 countries in the world |
- Q: What are the main factors affecting the toughness of special steel?
- The main factors affecting the toughness of special steel are its composition, microstructure, and heat treatment. Composition plays a crucial role in determining the toughness of special steel. The presence of certain alloying elements such as chromium, molybdenum, nickel, and vanadium can enhance the toughness of steel. These elements form solid solutions or precipitates in the steel matrix, which impede the propagation of cracks and improve the material's resistance to fracture. Microstructure also plays a significant role in determining the toughness of special steel. The size, shape, and distribution of the various phases in the steel, such as ferrite, pearlite, bainite, and martensite, affect its toughness. Fine-grained microstructures typically exhibit higher toughness due to their increased resistance to crack propagation. Heat treatment is another essential factor in controlling the toughness of special steel. The process of heating and cooling the steel can modify its microstructure, altering its toughness. Quenching, tempering, and annealing are common heat treatments used to improve the toughness of steel. Quenching and tempering, for example, can produce a microstructure with a desirable balance of hardness and toughness. Other factors that can affect the toughness of special steel include the presence of impurities, non-metallic inclusions, and the presence of residual stresses. Impurities and inclusions can act as stress concentrators and reduce the toughness of the steel. Residual stresses, which can arise during manufacturing processes, can also impact the toughness of the material by creating regions of high stress that can initiate crack formation. In summary, the composition, microstructure, heat treatment, presence of impurities and inclusions, and residual stresses are the main factors affecting the toughness of special steel. Understanding and controlling these factors are crucial for optimizing the toughness and performance of special steels in various applications.
- Q: What are the cost implications of using special steel?
- Using special steel can have significant cost implications. Special steels are often more expensive compared to standard steels due to their specific properties and manufacturing processes. The cost of special steel can vary depending on factors such as the alloy composition, production techniques, and market demand. Additionally, using special steel may require specialized tools, equipment, and skilled labor, which can further increase the overall cost. However, it is important to consider the long-term benefits and potential cost savings that can be achieved by using special steel, such as improved durability, corrosion resistance, and enhanced performance in specific applications.
- Q: Can special steel be used in marine environments?
- Yes, special steel can be used in marine environments. Special steel alloys, such as stainless steel or corrosion-resistant steel, are specifically designed to withstand the harsh conditions of saltwater and other corrosive elements found in marine environments. These alloys have excellent resistance to corrosion, erosion, and pitting, making them suitable for various marine applications, including shipbuilding, offshore structures, and marine equipment.
- Q: How does special steel contribute to the aerospace defense industry?
- Special steel plays a vital role in the aerospace defense industry as it offers the essential strength, durability, and resistance to extreme conditions needed for various applications in aircraft and defense systems. One of the primary contributions of special steel in this industry lies in its capacity to endure high temperatures and pressures. For instance, special steel alloys are utilized to manufacture turbine blades and other components in aircraft engines that are constantly exposed to exceedingly hot gases. These alloys possess excellent heat resistance properties, enabling them to maintain their strength and structural integrity even under such demanding circumstances. Furthermore, special steel exhibits exceptional resistance to corrosion and erosion, rendering it ideal for aerospace applications. Given that aircraft and defense systems often operate in harsh environments, including exposure to saltwater, moisture, and other corrosive elements, special steel alloys like stainless steel are employed to prevent rusting and corrosion. This ensures the longevity and dependability of critical components. Additionally, special steel is employed in the production of armor plates and ballistic protection systems for military vehicles and aircraft. Its high tensile strength and impact resistance make it an indispensable material for these applications, providing enhanced protection for military personnel and assets. Moreover, special steel finds application in the manufacturing of landing gears, wing components, and airframe structures. These components must withstand tremendous forces and stresses during takeoff, landing, and flight, making the strength and durability of special steel vital for the safety and performance of aerospace systems. In conclusion, special steel plays a crucial role in the aerospace defense industry by supplying the necessary strength, durability, and resistance to extreme conditions required for various applications. Its ability to endure high temperatures and pressures, resist corrosion and erosion, as well as its high tensile strength, make it an essential material in the manufacturing of aircraft engines, armor plates, ballistic protection systems, and other critical components.
- Q: What are the properties of heat-resistant steel?
- Heat-resistant steel is known for its ability to withstand high temperatures without undergoing significant deformation or oxidation. It has excellent thermal stability, retaining its strength and hardness even at extreme heat levels. Additionally, heat-resistant steel exhibits low thermal expansion and good thermal conductivity, making it suitable for applications requiring thermal resistance and efficient heat transfer. It also possesses a high melting point, allowing it to maintain its structural integrity even under intense heat. These properties make heat-resistant steel ideal for applications such as furnace components, jet engine parts, and high-temperature industrial processes.
- Q: How does special steel contribute to the robotics industry?
- The robotics industry benefits greatly from the use of special steel, which plays a vital role in its advancement. To begin with, special steel alloys possess extraordinary mechanical properties that make them ideal for manufacturing various robotic components. These alloys provide exceptional strength, durability, and resistance to wear and tear. Consequently, robots built with special steel can operate efficiently and reliably even in demanding environments like manufacturing plants or hazardous locations. Furthermore, special steel alloys offer outstanding heat resistance and thermal stability, a crucial characteristic in robotics. As robots often generate significant heat during operations, special steel components can withstand high temperatures without deforming or losing their structural integrity. This capability ensures that robots can perform optimally without the risk of mechanical failures caused by heat-related issues. Additionally, the corrosion resistance of special steel is highly advantageous for the robotics industry. Robots are increasingly being used in diverse applications such as underwater exploration, chemical handling, and outdoor environments. In such cases, exposure to moisture, chemicals, or harsh weather conditions can lead to corrosion and degradation of robot parts. By utilizing special steel alloys, manufacturers can significantly prolong the lifespan of robotic systems, reducing maintenance costs and enhancing overall reliability. Moreover, special steel's magnetic properties are invaluable in the development of magnetic sensors and actuators used in robotics. These sensors enable robots to detect and interact with their surroundings, improving their autonomy and adaptability. On the other hand, magnetic actuators enable precise control and movement in robotic systems. Special steel's magnetic properties contribute to the efficiency, accuracy, and responsiveness of these components, allowing robots to execute complex tasks with precision. In conclusion, special steel plays a vital role in the robotics industry by providing the necessary materials for manufacturing robust, high-performance, and versatile robotic systems. The use of special steel alloys enhances strength, durability, and the ability to withstand extreme conditions, ensuring the reliability, efficiency, and functionality of these machines.
- Q: Can special steel be used in the defense industry?
- Yes, special steel can be used in the defense industry. Special steel alloys are often used in the manufacturing of military vehicles, aircraft, naval vessels, and weaponry due to their exceptional strength, durability, and resistance to corrosion. These properties make special steel an ideal material for critical components and structures that require high performance and reliability in defense applications.
- Q: What are the requirements for special steel used in high-strength applications?
- Special steel used in high-strength applications typically has specific requirements to ensure its performance and durability. These requirements include: 1. High tensile strength: Special steel used in high-strength applications must have a high tensile strength to withstand heavy loads and resist deformation. This allows it to handle greater stresses without failure. 2. Excellent toughness: The steel should possess excellent toughness, which refers to its ability to absorb energy and resist fracture. This is crucial in high-strength applications as it prevents sudden and catastrophic failure under impact or dynamic loading conditions. 3. Superior hardness: High-strength steel needs to have a high level of hardness to resist wear, abrasion, and indentation. This ensures that the material maintains its structural integrity and performance even under extreme conditions. 4. Good ductility: While high tensile strength is essential, the steel should also possess good ductility, which allows it to undergo plastic deformation without fracturing. This property is vital in applications where the steel needs to be formed or shaped during manufacturing processes. 5. Resistance to corrosion: Special steel used in high-strength applications should have excellent corrosion resistance to prevent degradation caused by exposure to moisture, chemicals, or harsh environments. This ensures its longevity and reliability in various conditions. 6. Heat resistance: Some high-strength applications involve exposure to high temperatures, so the steel should have good heat resistance to maintain its mechanical properties and structural stability under elevated temperatures. 7. Controlled alloying elements: Special steel used in high-strength applications often contains specific alloying elements such as chromium, molybdenum, nickel, or vanadium. These elements are added to improve the steel's strength, toughness, hardness, and other desired properties. 8. Precise composition and microstructure: The steel should have a well-controlled composition and microstructure to ensure consistent and predictable mechanical properties. This can be achieved through precise manufacturing processes, such as controlled cooling rates or heat treatments. Meeting these requirements ensures that special steel used in high-strength applications can withstand the demanding conditions it is subjected to, providing reliable performance, longevity, and safety.
- Q: Can special steel be used for medical implants?
- Yes, special steel can be used for medical implants. It is commonly used in the manufacturing of medical devices and implants due to its exceptional strength, corrosion resistance, and biocompatibility. Special steel alloys, such as stainless steel or titanium alloys, are often utilized for various types of medical implants, including joint replacements, dental implants, and bone fixation devices.
- Q: What are the properties of copper alloys?
- Copper alloys possess several properties that make them highly desirable in various applications. They exhibit excellent electrical conductivity, thermal conductivity, and corrosion resistance. Copper alloys also showcase high strength, good ductility, and outstanding malleability, allowing them to be easily formed into different shapes and sizes. Additionally, these alloys demonstrate antimicrobial properties, making them suitable for use in healthcare settings. Overall, the properties of copper alloys make them a versatile and valuable material in numerous industries.
Send your message to us
Grade SUS410 Stainless Steel Round Bar with Certification
- Loading Port:
- Shanghai
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 3 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords