• Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod System 1
  • Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod System 2
  • Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod System 3
  • Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod System 4
  • Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod System 5
  • Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod System 6
Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod

Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
5 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Alloy Steel,Stainless Steel,Deformed Steel,Gear Steel,Bearing Steel,Spring Steel
Shape:
Steel Billets,Steel Round Bar,Steel Angle,Steel Square Bar,Steel Flat Bar,Steel Wire Rod,Steel Sheet,Steel Coil
Technique:
Spring,EFW,Extruded,Saw,Forged,ERW,Cold Drawn,Cold Rolled,Hot Rolled
Surface Treatment:
Galvanized,Coated,PVDF Coated,Black,Bright,Polished,Chromed Passivation,Dry,Oiled,Color Coated,Copper Coated
Certification:
UL,BSI,API,CE,RoHS,IBR,BV,SGS,ISO
Thickness:
80-800mm
Width:
80-800mm
Length:
6-12m
Outer Diameter:
80-800mm
Net Weight:
100kg
Packaging:
seaworthy packaging

Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod

Detailed Information of Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod

NameSteel Round Bar
ShapeRound Bar/Square Bar/Flat Bar/Plate/Wire
StandardGB/ASTM/SAE/AISI/DIN/JIS/EN/BS
Surface Treatment:Black/Peeling/Polished/Machined  
Delivery Condition:Hot Rolled or Forged/Peeled or Black Surface
TestSGS/UT 100% Elements Testing
Certificate:ISO/Mill Certificate
Service:24 hours online service /
more than 20 years trading and manufacture 
Quality Assurance:the third party inspection, such as SGS, BV, TUV…etc. is acceptable
Packaging Details:Seaworthy Packaging or as per customer's packing instruction

Product Overviews of Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod

Product NameTypical GradesDiameter(mm)Standard Adopted
Carbon Steel20 (1020/S20C/C22)  
40 (1040/S40C/C40)Ø16-Ø300 
45 (1045/S45C/C45)  
Bearing SteelGCr9 (51100/SUJ1)  
GCr15 (52100/SUJ2/100Gr6)Ø12-Ø250 
GCr9SiMn (A485-Gr.1/SUJ3) GB/SAE/
Cr-Mo Steel20Cr (5120/SCr420H/20Cr4) JIS/DIN
40Cr (5140/SCr440/41Cr4)Ø12-Ø250 
42CrMo(4140/SCM440/42CrMo4)  
Gear Steel20CrNiMo  
20CrMn(5115/SMnC420/20MnCr5)Ø16-Ø600 
20CrNiMo(8620/SNCM220/20CrMiMo2)  

Company Introduction of Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

 

Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod

Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod

 

After-sale servicel  CNBM provides the services and support you need for every step of our cooperation. We’re the business partners you can trust; you can relax and get on with doing business. 
l  For any problem, please kindly contact us at any your convenient time, we’ll reply you in our first priority within 24 hours
 
Advantages l  Industry experience over 20 years.
l  Shipment of goods -More than 70 countries worldwide.
l  The most convenient transport and prompt delivery.
l  Competitive price with best service.
l  High technical production line with top quality products.
l  High reputation based on best quality products.
 
 

Packaging & Delivery of Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod

 

Packaging DetailSea worthy packing /as per customer's packing instruction
Delivery Detail15 ~ 40 days after receiving the deposit

Products Show

Astm 1320/Aisi 4140 Alloy Steel Bar And Alloy Steel Rod

FAQ:

 

Are you a trading company or manufacturer?Manufacturer
What’s the MOQ?1000m2 
What’s your delivery time? 15-20 days after downpayment received
Do you Accept OEM service?Yes
what’s your delivery terms?FOB/CFR/CIF
What's the Payment Terms?30% as deposit,70% before shipment by T/T
Western Union acceptable for small amount.
L/C acceptable for large amount.
Scrow ,Paybal,Alipay are also ok 
Why  choose  us?Chose happens because of quality, then price, We can give you both.
Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.
What's your available port of Shipment?Main Port, China
What’s your featured  services?Our service formula: good quality+ good price+ good service=customer's trust
Where are your Market?Covering more than 160 countries in the world

 

Q: What are the different passivation techniques used for special steel?
There are several passivation techniques used for special steel, including chemical passivation, electrochemical passivation, and mechanical passivation. Chemical passivation involves using acids or other chemicals to remove surface impurities and create a protective oxide layer. Electrochemical passivation uses an electrical current to remove contaminants and promote the formation of a passive layer. Mechanical passivation involves techniques such as shot peening or sandblasting to physically clean and roughen the surface, enhancing its corrosion resistance.
Q: What are the main characteristics of heat-resistant steel forgings?
Heat-resistant steel forgings have several main characteristics that make them suitable for high-temperature applications. Firstly, they have excellent resistance to oxidation and corrosion, which allows them to maintain their mechanical properties even at elevated temperatures. This resistance is achieved through the addition of alloying elements such as chromium, nickel, and molybdenum, which form a protective oxide layer on the surface of the steel. Secondly, heat-resistant steel forgings exhibit high strength and toughness at high temperatures. This is crucial in applications where the material is subjected to mechanical stress and thermal cycling, such as in gas turbines, power plants, and aerospace engines. The combination of high strength and toughness ensures that the forgings can withstand the harsh operating conditions without deformation or failure. Another important characteristic of heat-resistant steel forgings is their ability to retain their hardness and dimensional stability even after prolonged exposure to high temperatures. This is achieved through a combination of careful alloying and heat treatment processes, which optimize the microstructure of the steel. The resulting material has a fine grain structure and a high degree of uniformity, which enhances its resistance to thermal fatigue and creep. Furthermore, heat-resistant steel forgings have good thermal conductivity, which allows for efficient heat transfer and dissipation. This is particularly important in applications where heat is generated and needs to be managed effectively to prevent overheating and damage to surrounding components. Lastly, heat-resistant steel forgings can be easily machined and fabricated into complex shapes, making them versatile and suitable for a wide range of applications. They can be forged, machined, and welded without any significant loss in their mechanical properties, making them ideal for manufacturing components with intricate designs and high precision requirements. In conclusion, the main characteristics of heat-resistant steel forgings include excellent resistance to oxidation and corrosion, high strength and toughness at high temperatures, dimensional stability and hardness retention, good thermal conductivity, and ease of machining and fabrication. These characteristics make heat-resistant steel forgings essential in industries that require reliable and durable materials in extreme heat conditions.
Q: How does special steel contribute to the performance of cutting tools?
Special steel contributes to the performance of cutting tools in several ways. Firstly, it offers exceptional hardness and strength, enabling the cutting tool to withstand the high forces and pressures encountered during cutting. This durability ensures that the tool remains sharp for longer periods, reducing the need for frequent replacements. Additionally, special steel also possesses excellent heat resistance, preventing the tool from overheating and maintaining its cutting ability. Moreover, special steel can have specific alloying elements that enhance wear resistance, corrosion resistance, and toughness, further improving the performance and lifespan of cutting tools. Overall, the use of special steel in cutting tools enhances their efficiency, reliability, and longevity, resulting in improved cutting precision and reduced downtime.
Q: What are the specific requirements for special steel used in the marine shafting industry?
The specific requirements for special steel used in the marine shafting industry are as follows: 1. Corrosion Resistance: Special steel used in marine shafting must have high resistance to corrosion due to the harsh conditions encountered in marine environments. It should be able to withstand constant exposure to saltwater, humidity, and other corrosive elements without deterioration. 2. Strength and Toughness: Marine shafting steel should possess high strength and toughness to withstand the heavy loads and vibrations experienced in marine operations. It should be able to withstand the continuous stress and dynamic loads without failure or deformation. 3. Fatigue Resistance: The steel used in marine shafting should have excellent fatigue resistance to withstand the cyclical loading experienced during operation. It should be able to endure millions of load cycles without developing cracks or fractures. 4. Dimensional Stability: Special steel used in marine shafting must exhibit dimensional stability to ensure precise alignment and fit within the machinery. It should have minimal dimensional changes under varying temperature and humidity conditions to maintain the integrity of the shaft system. 5. Machinability: It is essential for the steel used in marine shafting to be easily machinable to create complex shapes, such as propeller shafts and couplings. This allows for efficient manufacturing and maintenance of the shafting components. 6. Non-Magnetic Properties: Special steel used in marine shafting must possess low magnetic permeability to avoid interference with sensitive navigation and communication equipment. Non-magnetic properties minimize the risk of compass errors and electromagnetic interference. 7. Certification and Compliance: The steel used in marine shafting should meet specific industry standards and certifications, such as those set by classification societies like the American Bureau of Shipping (ABS) or the International Association of Classification Societies (IACS). These certifications ensure the steel's quality, performance, and adherence to safety regulations. Meeting these specific requirements ensures that the special steel used in marine shafting provides reliable performance, durability, and safety in marine applications.
Q: How does special steel perform in high-pressure hydrogen environments?
Special steel performs well in high-pressure hydrogen environments due to its high strength, corrosion resistance, and ability to withstand hydrogen embrittlement. It offers reliable performance and minimizes the risk of hydrogen-induced failures, making it a suitable choice for applications such as hydrogen storage, transportation, and fuel cells.
Q: How does special steel perform in extreme pressure conditions?
Special steel is specifically designed to perform exceptionally well in extreme pressure conditions. Due to its unique composition and manufacturing process, special steel exhibits high strength, durability, and resistance to deformation, making it ideal for applications where extreme pressures are involved. When subjected to extreme pressure conditions, special steel is able to maintain its structural integrity without undergoing significant deformations. This is due to its high tensile strength, which enables it to withstand tremendous forces without breaking or bending. Additionally, the special steel's hardness and toughness allow it to resist wear and damage caused by the intense pressure. Furthermore, special steel possesses excellent heat resistance, which is crucial in extreme pressure conditions where elevated temperatures are often present. The steel's ability to withstand high temperatures without losing its mechanical properties ensures its reliability and effectiveness even under the most demanding circumstances. Moreover, special steel has excellent corrosion resistance properties, making it suitable for use in extreme pressure conditions where exposure to corrosive substances is a concern. The steel's resistance to oxidation and other chemical reactions prevents it from deteriorating or weakening, ensuring its long-term performance and reliability. Overall, special steel performs exceptionally well in extreme pressure conditions due to its high strength, durability, resistance to deformation, heat resistance, and corrosion resistance. These properties make it a reliable and efficient choice for various industries and applications that operate under extreme pressure environments, such as oil and gas exploration, aerospace, automotive, and heavy machinery manufacturing.
Q: How does special steel compare to other materials like aluminum or titanium?
Special steel, such as stainless steel or tool steel, offers several advantages over materials like aluminum or titanium. Firstly, special steel generally exhibits higher strength and hardness, making it ideal for applications requiring durability and resistance to wear. Secondly, special steel possesses excellent thermal conductivity, allowing it to dissipate heat more efficiently compared to aluminum or titanium. Additionally, special steel is often more cost-effective and readily available in comparison to titanium. However, aluminum and titanium are known for their lightweight properties, making them preferable for applications where weight reduction is crucial. Ultimately, the choice between special steel, aluminum, or titanium depends on the specific requirements and constraints of the intended application.
Q: How does the addition of nickel enhance the properties of special steel?
The addition of nickel to special steel enhances its properties in several ways. Firstly, nickel increases the strength of steel, making it more durable and resistant to deformation. This is especially important in applications where the steel will be subjected to high temperatures or heavy loads. Additionally, nickel improves the corrosion resistance of steel. It forms a protective oxide layer on the surface of the steel, preventing it from rusting or corroding when exposed to moisture or harsh chemicals. This is particularly valuable in industries such as marine, aerospace, and chemical processing, where steel is frequently exposed to corrosive environments. Furthermore, nickel improves the toughness of steel, meaning that it can withstand impact or sudden changes in temperature without fracturing or cracking. This makes it suitable for applications that require high resistance to shock or vibration, such as in construction, automotive, or machinery manufacturing. Moreover, the addition of nickel enhances the heat resistance of steel. Nickel increases the steel's ability to retain its strength and shape at high temperatures, making it suitable for applications in high-temperature environments, such as in power generation, oil and gas, or furnace systems. In summary, the addition of nickel to special steel enhances its strength, corrosion resistance, toughness, and heat resistance. These improved properties make nickel-enhanced steel highly desirable in a wide range of industries and applications, where durability, reliability, and performance under challenging conditions are paramount.
Q: How is special steel used in the aerospace sector?
Special steel is extensively used in the aerospace sector due to its unique properties that make it suitable for various applications. One of the primary uses of special steel in the aerospace industry is for manufacturing aircraft engine components. These components, such as turbine blades, shafts, and casings, are subjected to extremely high temperatures, pressures, and stresses. Special steel, with its excellent heat resistance, high strength, and superior mechanical properties, enables these engine parts to withstand such harsh conditions, ensuring optimal performance and safety. Moreover, special steel is also utilized in the construction of aircraft structures, including wings, fuselage, landing gears, and other critical components. These structures need to be lightweight, yet strong enough to withstand the forces experienced during flight. Special steel alloys, such as stainless steel, are used to achieve this balance by providing excellent strength-to-weight ratios and corrosion resistance. Additionally, special steel finds application in aerospace fasteners, such as bolts, nuts, and screws. These fasteners must have exceptional strength and durability to ensure the structural integrity of the aircraft. Special steel alloys, like titanium alloys, are commonly used in this regard due to their lightweight nature, high strength, and resistance to corrosion. Furthermore, special steel is utilized in the production of aerospace tooling and equipment. These tools, such as molds, dies, jigs, and fixtures, need to be robust, wear-resistant, and capable of withstanding high temperatures and pressures during manufacturing processes. Special steel, with its excellent hardness, toughness, and heat resistance, makes it ideal for such applications. In summary, special steel plays a critical role in the aerospace sector by providing the necessary properties required for aircraft engine components, structures, fasteners, and tooling. Its unique characteristics of high strength, heat resistance, lightweight, and corrosion resistance make it an indispensable material in the production of reliable and high-performance aerospace systems.
Q: Can special steel be used in the agricultural industry?
Yes, special steel can be used in the agricultural industry. Special steels, such as high-strength and corrosion-resistant varieties, can be utilized for various applications in agriculture. These steels can be used to manufacture farm equipment, machinery, tools, and infrastructure such as storage containers, irrigation systems, and agricultural buildings. The properties of special steel, such as durability, resistance to wear and tear, and ability to withstand harsh environmental conditions, make it suitable for enhancing productivity and longevity in agricultural operations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords