• Aisi 4140  Alloy steel Mould Steel Round Bar System 1
  • Aisi 4140  Alloy steel Mould Steel Round Bar System 2
  • Aisi 4140  Alloy steel Mould Steel Round Bar System 3
  • Aisi 4140  Alloy steel Mould Steel Round Bar System 4
Aisi 4140  Alloy steel Mould Steel Round Bar

Aisi 4140 Alloy steel Mould Steel Round Bar

Ref Price:
$300.00 - 500.00 / m.t. get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar
Standard:
AISI,ASTM,JIS,GB,BS,DIN,API,EN
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
U Channel,Square,C Channel,Hexagonal,Round,Rectangular,Oval,LTZ
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Net Weight:
as required
Length:
as required
Thickness:
as required

The details of our Steel

1. Produce Standard: as the GB, AISI, ASTM, SAE, EN, BS, DIN, JIS Industry Standard

 

2. Produce processes: Smelt Iron -EAF smelt Billet  - ESR smelt Billet -Hot rolled or forged get the  steel round bar and  plate

 

3. Heat treatment:

Normalized / Annealed / Quenched+Tempered

 

4. Quality assurance:

All order we can received  Third party inspection, You can let SGS, BV,.. and others test company test and inspect our products before Goods shipping.


Product information

 

1.Chemical Composition(%)

C                 Si             Mn             P                  S              Cr            Ni              Mo 

0.42            0.30          0.60          ≤0.025         ≤0.025      1.00        ≤ 0.25         0.20


2.Equivalent Grades

Alloy Steel 4140\ DIN 42CrMo4\1.7225\SCM440


3.Heat treatment

 

Normalized / Annealed / Quenched / tempered


4.Delivery condition

 

Hot forged,   black sur face or  Turned (optional) , rough machined(optional)


5.Certification 

ISO9001:2008;SGS Test;Mill Certificate Test


6.Tempering 

Heating to 550 - 650 ° C and maintenance regime, again depending on the mechanical 

Product show

.jpg

Workshop show

Aisi 4140  Alloy steel Mould Steel Round Bar

Q: How does special steel contribute to the medical aftermarket industry?
Special steel plays a crucial role in the medical aftermarket industry by providing high-quality materials necessary for manufacturing medical devices and equipment. Special steel, also known as stainless steel, offers numerous advantages that make it ideal for medical applications. First and foremost, special steel is highly resistant to corrosion and rust, which is essential in the medical field where hygiene and cleanliness are of utmost importance. Medical devices like surgical instruments, implants, and equipment need to be sterilized frequently, and the corrosion resistance of special steel ensures their durability and longevity. Additionally, special steel possesses excellent strength and hardness properties, making it suitable for medical implants and prosthetics. These implants must be strong enough to endure the stresses and strains of the human body while maintaining their structural integrity. Special steel provides the necessary strength and toughness required for these critical applications. Furthermore, special steel is biocompatible, meaning it does not cause any adverse reactions or toxicity when in contact with living tissues. This property is essential for implants and devices that come into direct contact with the human body, as it minimizes the risk of rejection or allergic reactions. Moreover, special steel's versatility allows it to be easily machined and fabricated into complex shapes and sizes, meeting the diverse requirements of medical applications. It can be formed into delicate surgical instruments, precision cutting tools, and even large-scale equipment such as hospital beds and imaging machines. The high precision and dimensional stability of special steel contribute to the accuracy and reliability of medical devices. This is especially crucial in areas like diagnostics and imaging, where precise measurements and high-quality images are vital for accurate diagnosis and treatment planning. In conclusion, special steel's corrosion resistance, strength, biocompatibility, and versatility make it an invaluable material in the medical aftermarket industry. Its use in manufacturing medical devices and equipment ensures the highest standards of hygiene, durability, and performance, ultimately contributing to the advancement of healthcare and improving patient outcomes.
Q: How does special steel perform in abrasive wear applications?
Special steel is renowned for its outstanding performance in applications where abrasive wear is present. Its design specifically caters to endure the harsh conditions and high levels of abrasion that occur in diverse industrial processes. A notable characteristic of special steel is its remarkable hardness. It can effectively withstand the abrasive forces exerted by different materials, such as rocks, sand, or minerals, without experiencing significant wear or deterioration. Achieving this hardness involves a combination of alloying elements and heat treatment processes, which enhance the steel's ability to maintain its structural integrity even under extreme wear conditions. Furthermore, special steel often possesses a high level of toughness, allowing it to absorb impact and resist fracture or chipping. This property is particularly crucial in applications involving abrasive wear, where materials frequently collide and generate high levels of stress. The toughness of special steel enables it to withstand these impacts and sustain its performance over an extended period. Moreover, special steel exhibits excellent corrosion resistance, which is vital in abrasive wear applications that involve exposure to moisture, chemicals, or other corrosive agents. This resistance guarantees that the steel does not deteriorate or lose its effectiveness due to chemical reactions or oxidation, extending its lifespan and reducing the need for maintenance. To summarize, special steel excels in abrasive wear applications due to its hardness, toughness, and corrosion resistance. These properties enable it to endure the challenging conditions and high levels of abrasion encountered in various industrial processes, ensuring long-lasting performance and minimizing downtime.
Q: What are the different casting techniques used for special steel?
Some of the different casting techniques used for special steel include investment casting, sand casting, continuous casting, and centrifugal casting. Each technique has its own advantages and is chosen based on factors such as the complexity of the steel part, the desired quality, and cost considerations.
Q: How is boron steel used in automotive safety applications?
Boron steel is used in automotive safety applications due to its exceptional strength and ability to absorb impact energy. It is commonly utilized in the construction of car bodies and safety components such as side impact beams, roll cage reinforcements, and door intrusion beams. By incorporating boron steel, vehicles can better withstand and distribute crash forces, providing enhanced protection to occupants during collisions.
Q: How does special steel perform in terms of fatigue strength?
Special steel generally performs well in terms of fatigue strength. It is specifically designed to withstand repeated loading and unloading without experiencing fatigue failure. Its unique composition and heat treatment processes make it highly resistant to crack initiation and propagation, resulting in an extended fatigue life compared to regular steel. Additionally, special steels often exhibit improved resistance to other forms of degradation, such as corrosion, which further enhances their overall fatigue performance.
Q: How does special steel perform in chemical processing applications?
Due to its outstanding performance and unique properties, special steel finds wide application in chemical processing. Its high resistance to corrosion is a key advantage in this field. Specifically designed to withstand harsh chemical environments, special steel ensures reliability and durability. Compared to other materials, special steel provides superior protection against corrosion in chemical processing applications where corrosive substances are present. It exhibits exceptional resistance to acids, alkalis, and various chemical compounds, guaranteeing the integrity and longevity of equipment and components. In addition, special steel offers excellent mechanical properties, including high strength and toughness, which are essential in chemical processing. It can endure high temperatures, pressure, and mechanical stresses commonly encountered in these environments. Its robustness and ability to maintain structural integrity under extreme conditions make it the preferred choice for critical components such as reactors, vessels, and piping systems. Special steel also contributes to the overall efficiency and safety of chemical processing operations. Its resistance to scaling and fouling reduces the risk of contamination and blockages, minimizing downtime for cleaning and maintenance. As a result, productivity and cost-effectiveness are improved. Furthermore, special steel is frequently chosen for its hygienic properties, making it suitable for use in the food and pharmaceutical industries. It is easy to clean and sanitize, ensuring the highest levels of product purity and compliance with industry regulations. In conclusion, special steel excels in chemical processing applications. Its corrosion resistance, mechanical strength, thermal stability, and hygienic properties make it an ideal choice for equipment and components, enhancing the reliability, efficiency, and safety of chemical processing operations.
Q: How does special steel perform in corrosive environments?
Special steel is specifically designed to perform exceptionally well in corrosive environments. It is resistant to corrosion caused by various factors such as moisture, chemicals, and high temperatures. This type of steel typically contains higher levels of alloying elements such as chromium, nickel, and molybdenum, which enhance its corrosion resistance properties. Additionally, special steel undergoes specific heat treatments and surface finishes to further improve its resistance to corrosion. Overall, special steel exhibits excellent performance and longevity in corrosive environments, making it a preferred choice in industries such as oil and gas, chemical processing, marine, and construction.
Q: What are the different types of spring steel?
There are several types of spring steel, including high carbon spring steel, alloy spring steel, stainless steel, and blue tempered spring steel. Each type has different properties and is used for various applications in industries such as automotive, construction, and manufacturing.
Q: How is special steel used in the construction industry?
Special steel is used in the construction industry for various purposes such as reinforcing concrete and providing structural support in high-rise buildings, bridges, and infrastructure projects. It is also used for manufacturing construction equipment, tools, and machinery due to its exceptional strength, durability, and resistance to corrosion.
Q: What are the different surface protection methods for special steel?
Special steel can be protected using various surface protection methods, each with its own advantages and applications. Here are a few common methods: 1. Coatings: Coatings are widely used to safeguard the surface of special steel. This can involve applying paint, powder coating, or electroplating. Coatings act as a barrier, preventing corrosion and enhancing the steel's appearance. 2. Galvanization: Galvanization entails coating the special steel with a zinc layer through a hot-dip galvanizing process. This method provides excellent corrosion resistance, making it suitable for outdoor structures and equipment exposed to harsh environments. 3. Passivation: Passivation is a chemical process that eliminates surface contaminants and forms a protective oxide layer on the special steel's surface. This method improves corrosion resistance, especially for stainless steel. 4. Nitriding: Nitriding is a heat-treatment process that diffuses nitrogen into the surface of special steel, resulting in a hard and wear-resistant layer. This method enhances durability, resistance to fatigue, and corrosion resistance, making it ideal for heavy load and abrasive applications. 5. PVD and CVD coatings: Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) are methods used to deposit thin films of various materials onto the surface of special steel. These coatings offer enhanced hardness, wear resistance, and low friction properties, making them perfect for cutting tools, molds, and high-performance applications. 6. Shot peening: Shot peening is a mechanical surface treatment that involves bombarding the special steel surface with small spherical particles. This process induces compressive stresses, improving fatigue life, resistance to stress corrosion cracking, and wear resistance. 7. Anodizing: Anodizing is primarily used for aluminum but can also be applied to certain special steel alloys. It creates an oxide layer on the surface, enhancing corrosion resistance and allowing for decorative finishes. Each of these surface protection methods offers distinct properties and benefits. The choice of method depends on the specific requirements of the special steel application.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords