• 20MnCr5 42CrMo4 4340 Alloy Steel Round Bar System 1
  • 20MnCr5 42CrMo4 4340 Alloy Steel Round Bar System 2
  • 20MnCr5 42CrMo4 4340 Alloy Steel Round Bar System 3
20MnCr5 42CrMo4 4340 Alloy Steel Round Bar

20MnCr5 42CrMo4 4340 Alloy Steel Round Bar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Round Bar

20MnCr5 42CrMo4 4340 Alloy Steel Round Bar

Product Information:

1.Grade: 20MnCr5 42CrMo4 4340
2.Dia:12-300mm
3.Length:3-12m
4.Hot rolled
5.MOQ: 30mt per size

Product Overviews:

Product NameTypical GradesDiameter(mm)Standard adopted
Carbon Steel20 (1020/S20C/C22)Ø16-Ø300GB/SAE/JIS/DIN
40 (1040/S40C/C40)
45 (1045/S45C/C45)
Bearing SteelGCr9 (51100/SUJ1)Ø12-Ø250
GCr15 (52100/SUJ2/100Gr6)
GCr9SiMn (A485-Gr.1/SUJ3)
Cr-Mo Steel20Cr (5120/SCr420H/20Cr4)Ø12-Ø250
40Cr (5140/SCr440/41Cr4)
42CrMo(4140/SCM440/42CrMo4)
Gear Steel20CrNiMoØ16-Ø600
20CrMn(5115/SMnC420/20MnCr5)
20CrNiMo(8620/SNCM220/20CrMiMo2)

Product Show:

20MnCr5 42CrMo4 4340 Alloy Steel Round Bar

Our Advantages:

· Industry experience over 20 years.

· Shipment of goods -More than 70 countries worldwide.

· The most convenient transport and prompt delivery.

· Competitive price with best service.

· High technical production line with top quality products.

· High reputation based on best quality products.

 

With our experienced, enthusiastic and dynamic staffs, we assure to bring you the products with best quality, reasonable prices and good after-sales services under the motto: Friends First, Business After.

Communication, Experience, Expertise and Best efforts are our Promises to you.


Q: What are the different methods for improving the toughness of tool steels used in special steel?
There are several methods available for improving the toughness of tool steels used in special steel applications. These methods are aimed at enhancing the resistance of the steel to fracture and increasing its ability to absorb energy without undergoing brittle failure. Some of the different methods for improving the toughness of tool steels include: 1. Alloying: The addition of specific alloying elements such as chromium, molybdenum, vanadium, and tungsten can significantly enhance the toughness of tool steels. These alloying elements form carbides within the steel matrix, which helps to improve its toughness. 2. Heat treatment: Proper heat treatment can greatly improve the toughness of tool steels. Processes such as quenching and tempering are commonly employed to achieve the desired level of toughness. Quenching involves rapidly cooling the steel from high temperatures, resulting in a hardened structure. Tempering follows quenching and involves reheating the steel to a specific temperature and then cooling it slowly. This process helps to relieve internal stresses and increases toughness. 3. Controlled cooling rates: By controlling the cooling rate during heat treatment, it is possible to optimize the toughness of tool steels. Slow cooling rates allow for the formation of a more uniform microstructure, leading to improved toughness. 4. Grain refinement: Refining the grain size of the steel can enhance its toughness. This can be achieved through processes such as hot working, controlled rolling, or adding grain refining elements like titanium or zirconium. 5. Surface treatments: Certain surface treatments, such as shot peening or nitriding, can improve the toughness of tool steels. Shot peening involves bombarding the surface of the steel with small metal or ceramic particles, inducing compressive residual stresses that enhance toughness. Nitriding involves diffusing nitrogen into the surface of the steel, forming a hard and wear-resistant layer that improves toughness. 6. Cryogenic treatment: Cryogenic treatment involves subjecting the tool steel to extremely low temperatures, typically below -100°C (-148°F), for an extended period. This process helps to refine the microstructure and reduce residual stresses, leading to improved toughness. 7. Powder metallurgy: Powder metallurgy techniques, such as hot isostatic pressing or sintering, can produce tool steels with improved toughness. By using a fine powder and applying high pressure and temperature, a more uniform and fine-grained microstructure can be achieved, resulting in increased toughness. Overall, the selection and combination of these methods depend on the specific requirements of the tool steel and the intended application. By carefully considering these techniques, manufacturers can enhance the toughness of tool steels, ensuring their suitability for demanding special steel applications.
Q: How does special steel contribute to the telecommunications aftermarket industry?
Special steel contributes to the telecommunications aftermarket industry by providing durable and high-quality components for various telecommunications equipment. This steel is used in the manufacturing of antennas, towers, cables, and other crucial parts, ensuring the reliability and longevity of the telecom infrastructure. Additionally, special steel's unique properties, such as corrosion resistance and high electrical conductivity, enhance the performance and efficiency of telecommunications systems, enabling seamless connectivity and better communication services.
Q: How does precipitation-hardening steel achieve high strength through heat treatment?
Precipitation-hardening steel achieves high strength through heat treatment by a process called aging. After the steel is initially heat-treated, it is cooled quickly to form a supersaturated solid solution. This solution contains a high concentration of alloying elements. When the steel is reheated to a lower temperature, these alloying elements precipitate out, forming small particles within the steel matrix. These precipitates act as obstacles to dislocation movement, which in turn increases the strength of the steel. The size, distribution, and density of these precipitates can be controlled through the heat treatment process, allowing for the desired strength and hardness to be achieved in the final product.
Q: Is special steel suitable for manufacturing precision components?
Manufacturing precision components can greatly benefit from the use of special steel. This type of steel is specifically designed to possess exceptional qualities such as high strength, hardness, and resistance to wear, corrosion, and heat. These outstanding characteristics make it the perfect choice for creating precision components that demand tight tolerances, accuracy, and reliability. The inherent strength and hardness of special steel enable the production of durable and long-lasting precision components. This is particularly crucial in industries where components are exposed to intense stress and heavy loads, such as aerospace, automotive, and machinery manufacturing. The wear and corrosion resistance of special steel ensures that the precision components can withstand harsh operating conditions and retain their functionality over extended periods of time. Moreover, special steel's remarkable heat resistance qualifies it for precision components that encounter elevated temperatures. This is especially significant in industries like aerospace and power generation, where components must endure extreme heat without compromising their performance. In addition, special steel offers excellent machinability, which is vital for manufacturing precision components with intricate designs and complex geometries. It can be easily shaped, cut, and formed into various sizes and shapes, enabling the production of intricate and precise components. Overall, the exceptional properties of special steel, including high strength, hardness, resistance to wear, corrosion, and heat, along with its superb machinability, make it highly suitable for manufacturing precision components. Its utilization guarantees the creation of high-quality components that adhere to the stringent requirements of precision applications.
Q: What are the different coating techniques used for special steel?
There are several different coating techniques used for special steel, including hot-dip galvanizing, electroplating, powder coating, and thermal spraying. Each technique has its own advantages and applications, providing enhanced protection against corrosion, improved aesthetics, or increased durability depending on the specific requirements of the steel.
Q: How does special steel withstand extreme temperatures?
Due to its unique composition and production process, special steel possesses the ability to endure extreme temperatures. An essential factor in achieving this is the incorporation of alloying elements such as chromium, molybdenum, and nickel, which enhance the steel's resistance to heat. These elements react to form stable oxides on the steel's surface, forming a protective shield against oxidation and corrosion at high temperatures. Furthermore, special steel undergoes specific heat treatment methods like quenching and tempering, which refine its microstructure and enhance its mechanical properties. This process strengthens the steel, enabling it to maintain its strength and hardness even under harsh temperature conditions. In addition, the manufacturing process of special steel requires precision and control over the cooling rate. This controlled cooling prevents the formation of brittle phases, ensuring that the steel maintains its toughness and ductility at both high and low temperatures. Moreover, the grain size of special steel is meticulously regulated through techniques like grain refinement, resulting in a more uniform and fine-grained microstructure. This fine-grained structure enhances the steel's ability to resist thermal fatigue and creep, enabling it to endure prolonged exposure to extreme temperatures without significant degradation. Overall, the combination of alloying elements, specialized heat treatment processes, controlled cooling, and refined microstructure renders special steel highly capable of withstanding extreme temperatures while preserving its structural integrity and mechanical properties.
Q: What are the different methods of surface laser cladding for special steel?
There are several methods of surface laser cladding for special steel, including powder-based laser cladding, wire-based laser cladding, and direct laser cladding. Powder-based laser cladding involves melting a powder material onto the surface of the steel using a laser beam. Wire-based laser cladding uses a wire feed system to deliver the material to be cladded onto the surface, which is then melted by the laser. Direct laser cladding directly melts the material onto the steel surface without the need for additional feed systems, making it a more efficient and precise method.
Q: Can special steel be used in the manufacturing of sports equipment?
Yes, special steel can be used in the manufacturing of sports equipment. Special steel, such as carbon steel or stainless steel, provides durability, strength, and corrosion resistance, making it suitable for various sports equipment like golf clubs, tennis racquets, or bicycle frames.
Q: What are the different surface hardening grades of special steel?
Different surface hardening grades of special steel are available, each with specific characteristics and properties. Some commonly used grades include the following: 1. Case-hardening steels: These grades, typically low carbon steels, develop a hard outer layer while maintaining a softer core. Carburizing or nitriding processes introduce carbon or nitrogen into the steel surface. These steels are used in applications where wear resistance and toughness are necessary. 2. Tool steels: These grades are designed for cutting, forming, and shaping tools. Tool steels are known for their high hardness, wear resistance, and ability to retain a cutting edge even at high temperatures. Various types of tool steels, such as HSS, hot work steel, cold work steel, and plastic mold steel, are suitable for specific applications. 3. Stainless steels: These grades contain a minimum of 10.5% chromium, providing excellent corrosion resistance. Stainless steels can be hardened through precipitation hardening or martensitic transformation. They are commonly used in industries requiring resistance to corrosion and high temperatures, such as food processing, chemical, and medical industries. 4. High-strength steels: These grades offer exceptional strength and toughness. They often contain alloying elements like manganese, chromium, or nickel to enhance their mechanical properties. High-strength steels are commonly used in structural applications, automotive components, and heavy machinery. 5. Maraging steels: These grades are known for their high strength, toughness, and excellent resistance to fracture. Maraging steels achieve these properties through a unique aging process involving precipitation hardening. They find applications in aerospace, defense, and tooling industries. 6. Bearing steels: These grades are specially formulated to provide excellent wear resistance and durability for bearing applications. Bearing steels often contain alloying elements like chromium, molybdenum, and vanadium to enhance their mechanical properties and fatigue resistance. These examples represent the diverse range of surface hardening grades of special steel, each offering unique properties and characteristics. This allows for a wide range of applications across various industries.
Q: What are the different methods for improving the wear resistance of special steel?
There are several methods that can be employed to enhance the wear resistance of special steel. These methods include: 1. Alloying: By adding specific alloying elements to the steel composition, such as chromium, vanadium, or molybdenum, the wear resistance can be significantly improved. These alloying elements form carbides within the steel matrix, which increase hardness and provide resistance against wear. 2. Heat treatment: Special steels can undergo various heat treatment processes, such as quenching and tempering, to enhance their wear resistance. Quenching involves rapidly cooling the steel from high temperatures to increase hardness, while tempering is performed to relieve internal stresses and improve toughness. 3. Surface coatings: Applying specialized coatings on the surface of the steel can greatly improve wear resistance. Common coating methods include thermal spray coating, electroplating, and physical vapor deposition. These coatings create a protective layer that resists wear and reduces friction. 4. Shot peening: This mechanical surface treatment involves bombarding the steel surface with small spherical particles, called shot, at high velocities. The impact of the shot induces compressive stress on the surface, which enhances the material's resistance to wear and fatigue. 5. Nitriding: This process involves diffusing nitrogen into the surface of the steel at elevated temperatures. Nitrogen forms nitrides, which significantly increase surface hardness and wear resistance. 6. Cryogenic treatment: By subjecting the steel to extremely low temperatures, typically below -100 degrees Celsius (-148 degrees Fahrenheit), the material undergoes a structural transformation that increases its wear resistance. This process helps to refine the grain structure and improve the material's toughness. 7. Grain refinement: By employing methods like severe plastic deformation or specialized casting techniques, the grain size of the steel can be reduced. Smaller grain sizes result in increased hardness and wear resistance due to improved dislocation movement and reduced grain-boundary sliding. It is important to note that the choice of method for improving wear resistance depends on factors such as the specific application, budget, and desired level of improvement. A combination of these methods may also be utilized to achieve optimal wear resistance in special steel.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords