• Monolithic Refractories Zirconia Slide Gate Nozzle Upper and Lower Nozzle Brick for Iron and Steel Industry System 1
  • Monolithic Refractories Zirconia Slide Gate Nozzle Upper and Lower Nozzle Brick for Iron and Steel Industry System 2
  • Monolithic Refractories Zirconia Slide Gate Nozzle Upper and Lower Nozzle Brick for Iron and Steel Industry System 3
Monolithic Refractories Zirconia Slide Gate Nozzle Upper and Lower Nozzle Brick for Iron and Steel Industry

Monolithic Refractories Zirconia Slide Gate Nozzle Upper and Lower Nozzle Brick for Iron and Steel Industry

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

Place of Origin:

Shandong, China (Mainland)

Shape:

Plate

Material:

SiC,Zirconia,corundum

SiO2 Content (%):

0.2

Al2O3 Content (%):

0.3

MgO Content (%):

less

CaO Content (%):

less

Refractoriness (Degree):

1770°< Refractoriness< 2000°

CrO Content (%):

less

SiC Content (%):

7%

Model Number:

B60,B50,C40

Brand Name:

Shikai

Density:

3.0g/cm3

Al2O3:

85%

Compressive strength:

100Mpa

Apparent Porosity:

10%

Refractoriness:

more than 1790℃

Advantage:

high refractoriness, good thermal shock resistance, erosion resistance

Usage:

steel plant ladle and tundish

Packing:

carton,pallets

C+SiC:

5%

product:

slide gate,upper nozzle,lower nozzle





Packaging & Delivery

Packaging Details:

cartons,plastic film and pallets,wooden box,As requested.

Delivery Detail:

within 30days after get your order

                         Ladle nozzle brick,upper nozzle brick,lower nozzle brick 

Product information:                                                                                 

 

1.Advantage:high refractoriness, good thermal shock resistance, erosion resistance and 

scouring resistance, small hole diameter change, long service life, etc.

2.Product data:

Burnt Slide gate

Item

B60,B50,C40type

Al-C Slide Gate

Al-Zr-C Slide Gate 

AlC-70

AlC -75

AlC -80

AlC-85

AlC -86

AlZrC -70

AlZrC-75

AlZrC -77

Al2O3,%

70

75

80

85

86

70

75

77

C+SiC,%

7

7

5

5

4

7

7

7

ZrO2,%

-

-

-

-

-

6

6

2.5

A.P.,% max

10

10

10

10

7

10

10

10

B.D.,g/cm3

2.8

2.9

2.9

3.0

2.95

3.00

3.05

2.90

C.C.S., MPa min

65

70

100

100

100

110

115

100

 

Unburned compound AlC Slide gate

Item

B60,B50,C40type

Al-C Slide Gate 

AlC-70A

AlC-75A

AlC-80A

AlC-85A

AlC-86A

Al2O3,% 

70

75

80

85

86

C,%

7

7

5

5

4

A.P.,% max

10

10

8

10

7

B.D. g/cm3 min

2.8

2.9

3.0

3.0

2.95

C.C.S., MPa min

65

70

100

100

100

 

zirconium core :

Item             

ZN-

65

ZN-

70

ZN-

75

ZN-

80

ZN-

85

ZN-

90

ZN-

93A

ZN-

93B

ZN-

93C

ZN-

93D

ZN-

95A

ZN-

95B

ZN-

96

ZrO2(%)

≥65

≥70

≥75

≥80

≥85

≥90

≥93

≥93

≥93

≥93

≥95

≥95

≥96

Bulk density

(g/cm3)

≥3.8

≥3.8

≥3.9

≥4.0

≥4.1

≥4.3

≥5.1

≥4.9

≥4.7

≥4.4

≥4.6

≥5.2

≥5.2

Apparent Porosity(%)

≤23

≤22

≤22

≤20

≤20

≤20

≤13

≤15

≤18

≤20

≤20

≤9

≤5.6

Thermal shock resistance

(cycles)(1100℃,water cooling)

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>8

>10


FAQ

We have organized several common questions for our clients,may help you sincerely:

①How about your company?

A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

②How to guarantee the quality of the products?

We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.


Q: How do monolithic refractories improve the efficiency of reheating furnaces in steel plants?
Monolithic refractories improve the efficiency of reheating furnaces in steel plants by providing a superior lining material that offers high thermal conductivity, excellent heat resistance, and resistance to thermal shock. These refractories help to minimize heat loss and improve heat transfer, resulting in reduced energy consumption and increased furnace productivity. Additionally, the use of monolithic refractories eliminates the need for time-consuming bricklaying, allowing for quicker furnace start-up times and reduced maintenance downtime.
Q: How do monolithic refractories resist corrosion from molten metals?
Monolithic refractories are able to resist corrosion from molten metals due to their unique composition and structural properties. These refractories are typically made from a single material, such as alumina, magnesia, or silica, and are designed to withstand high temperatures and harsh chemical environments. One key factor contributing to their corrosion resistance is their dense and compact structure. Monolithic refractories are manufactured using a specialized process that results in a tightly bonded material with minimal porosity. This low porosity limits the penetration of molten metals, preventing them from causing damage to the refractory. Furthermore, monolithic refractories often contain additives or binders that enhance their resistance to corrosion. These additives can include silicon carbide, zirconia, or other materials that have excellent chemical stability and can withstand the corrosive effects of molten metals. In addition to their composition, monolithic refractories also possess excellent thermal shock resistance. This means that they can withstand rapid temperature changes without cracking or spalling. When molten metals come into contact with the refractory, the refractory's ability to handle thermal shock prevents the formation of cracks or fractures, which could allow further penetration of the corrosive molten metal. Overall, the combination of a dense structure, chemical additives, and high thermal shock resistance allows monolithic refractories to resist corrosion from molten metals. These refractories are widely used in various industrial applications, such as steelmaking, foundries, and non-ferrous metal processing, where they provide reliable and durable protection against corrosion.
Q: How do monolithic refractories withstand high temperatures in iron and steel production?
Monolithic refractories are specially designed to withstand the high temperatures encountered in iron and steel production. These refractories are made from a single piece or a single material, unlike traditional brick refractories that are made by laying bricks one by one. The ability of monolithic refractories to withstand high temperatures is due to their unique composition and structure. They are made from high-quality raw materials such as alumina, magnesia, silica, and carbon, which have high melting points and excellent heat resistance. The monolithic refractory is typically mixed with a binder, such as clay or cement, to give it shape and strength. This binder helps to hold the refractory particles together and provides the necessary structure to withstand thermal stresses. Additionally, various additives and additives can be included in the mix to further enhance the refractory properties. During iron and steel production, the monolithic refractories are exposed to extreme temperatures, rapid heating, and cooling cycles, as well as chemical reactions with molten metals and slag. However, the unique composition and structure of monolithic refractories enable them to endure these harsh conditions. The high melting point materials used in monolithic refractories prevent them from melting or deforming under the intense heat of iron and steel production. These materials have excellent thermal conductivity, allowing them to effectively transfer heat away from the hot surfaces, thus preventing overheating and damage. Furthermore, the binders and additives in monolithic refractories help to increase their resistance to thermal shock, which occurs when there is a rapid change in temperature. This resistance is crucial in iron and steel production since the refractories are frequently exposed to extreme temperature differentials. Lastly, the monolithic nature of these refractories eliminates the joints and gaps found in traditional brick refractories. The absence of joints minimizes the risk of heat leakage and infiltration of molten metal or slag, ensuring a more efficient and durable lining. In conclusion, monolithic refractories are specifically designed to withstand the high temperatures encountered in iron and steel production. Their composition, structure, and unique properties enable them to endure extreme heat, rapid temperature changes, chemical reactions, and thermal stresses, making them essential components in the manufacturing of iron and steel.
Q: What are the considerations for repairing and relining monolithic refractories?
When repairing and relining monolithic refractories, there are several key considerations that need to be taken into account. First and foremost, it is crucial to assess the extent of the damage or deterioration in order to determine the appropriate repair method. Factors such as the type of refractory material, the operating conditions, and the expected service life must be considered. Additionally, it is essential to select the right refractory material for the repair or relining process. This involves evaluating the temperature range, chemical resistance, thermal conductivity, and mechanical properties of the refractory material to ensure it is compatible with the specific application. Another important consideration is the proper preparation of the surface before applying the repair material. This may involve removing any loose or damaged refractory, cleaning the surface thoroughly, and creating a suitable bonding surface to ensure optimal adhesion. Furthermore, the application technique and curing process of the repair material should be carefully followed to achieve the desired performance and durability. This may involve proper mixing, application thickness, drying time, and temperature control. Lastly, it is crucial to conduct regular inspections and maintenance to identify any signs of deterioration or damage early on. This proactive approach will help prevent major repairs or relining in the future and prolong the overall lifespan of the monolithic refractories.
Q: What are the key considerations when selecting monolithic refractories for tundish applications?
When choosing monolithic refractories for tundish applications, there are several important factors to take into account. Firstly, it is crucial to consider the refractory material's ability to withstand thermal shocks. Tundishes experience drastic changes in temperature as molten metal is poured in and drained out. If the refractory material is not resistant to thermal shocks, it will deteriorate quickly and fail, resulting in expensive repairs and downtime. Another important factor is the material's resistance to chemical attacks. Tundishes often come into contact with aggressive chemical environments due to the presence of molten metal and various slag compositions. The refractory material must be capable of enduring these corrosive elements and maintaining its integrity over time. Furthermore, the mechanical strength of the refractory material is essential. Tundishes are subjected to physical stresses, including the weight of the molten metal and the movement of the tundish itself. A weak refractory material is prone to cracking and failure, which can compromise the overall performance and lifespan of the tundish. The ease of installation and repair should also be taken into consideration. Monolithic refractories are typically cast or gunned in place, so it is important to select a material that can be easily applied and shaped to fit the tundish design. Additionally, if repairs are required, the refractory material should allow for patching or replacement without causing significant disruptions to operations. Lastly, cost is always a factor to consider. While it is important to choose a high-quality refractory material that meets the specific requirements of the tundish, the overall cost-effectiveness must be evaluated. This includes considering the initial material cost, installation and repair expenses, and the expected lifespan of the refractory. To summarize, the key considerations when selecting monolithic refractories for tundish applications are thermal shock resistance, chemical resistance, mechanical strength, ease of installation and repair, and cost-effectiveness. By carefully assessing these factors, one can choose a refractory material that will deliver optimal performance and durability in tundish applications.
Q: How do monolithic refractories improve the efficiency of ladle and tundish preheaters?
Monolithic refractories play a crucial role in improving the efficiency of ladle and tundish preheaters through several key mechanisms. Firstly, monolithic refractories provide excellent thermal insulation properties. They have low thermal conductivity, which means they are effective in preventing heat loss from the preheaters. By minimizing heat loss, monolithic refractories ensure that the majority of the heat generated by the preheater is utilized for preheating the ladle or tundish. This results in reduced energy consumption and improved efficiency of the preheating process. Secondly, monolithic refractories offer high thermal shock resistance. Ladle and tundish preheaters are subjected to rapid and extreme temperature changes during operation. The ability of monolithic refractories to withstand these thermal shocks ensures their long-lasting performance, minimizing the need for frequent repairs or replacements. This not only enhances the efficiency of the preheaters but also reduces downtime and maintenance costs. Furthermore, monolithic refractories exhibit excellent mechanical strength and abrasion resistance. The ladle and tundish preheaters experience constant wear and tear due to the movement of ladles or tundishes, and the abrasive nature of the materials being processed. The use of monolithic refractories prevents erosion and damage to the preheaters, ensuring their longevity and optimal functioning. This, in turn, improves the overall efficiency of ladle and tundish preheaters by reducing downtime and maintenance requirements. Lastly, monolithic refractories offer design flexibility. They can be customized and shaped according to the specific requirements of the ladle or tundish preheaters. This allows for better fitting and insulation, maximizing heat transfer efficiency. The ability to tailor the refractory lining to the preheater's design also ensures uniform heating, minimizing temperature variations and improving overall operational efficiency. In summary, the use of monolithic refractories in ladle and tundish preheaters improves efficiency by providing superior thermal insulation, thermal shock resistance, mechanical strength, abrasion resistance, and design flexibility. These properties result in reduced heat loss, minimized downtime, enhanced durability, and optimized heat transfer, ultimately leading to improved efficiency of the preheating process.
Q: How do monolithic refractories contribute to the reduction of downtime in iron and steel plants?
Monolithic refractories play a crucial role in reducing downtime in iron and steel plants due to their unique properties and applications. These refractories are composed of a single, uniform material, making them highly versatile and easier to install compared to traditional brick refractories. Firstly, monolithic refractories offer excellent thermal insulation, which helps to prevent heat loss and maintain high temperatures in various areas of the plant. This insulation capability reduces the need for frequent repairs and replacements, as it minimizes thermal stress and prolongs the lifespan of equipment and furnaces. This, in turn, results in less downtime required for maintenance and repair work. Secondly, monolithic refractories exhibit superior resistance to thermal shock. The extreme temperatures experienced in iron and steel plants can cause rapid and significant temperature changes, leading to the cracking and failure of refractory linings. However, monolithic refractories have better thermal shock resistance, enabling them to withstand sudden temperature fluctuations without sustaining damage. This property enhances their durability and contributes to the reduction of downtime. Moreover, monolithic refractories offer enhanced mechanical strength and chemical resistance, making them suitable for the harsh operating conditions in iron and steel plants. These refractories can withstand the erosive effects of molten metal, slag, and other corrosive materials, ensuring the longevity of equipment and reducing the frequency of maintenance interventions. Additionally, the installation process of monolithic refractories is faster and more efficient compared to brick refractories. They can be easily applied using various techniques, such as shotcreting or gunning, allowing for quick repairs or renovations during planned shutdowns or even emergency situations. The reduced installation time results in shorter downtime periods, enabling the plant to resume operations promptly. In conclusion, monolithic refractories significantly contribute to the reduction of downtime in iron and steel plants through their excellent thermal insulation, resistance to thermal shock, mechanical strength, and chemical resistance. Their ease of installation and quick repair capabilities further enhance their role in minimizing downtime and ensuring uninterrupted production in these critical industries.
Q: How do monolithic refractories prevent heat loss through radiation?
Monolithic refractories prevent heat loss through radiation by their high thermal conductivity and low thermal expansion. These properties allow them to efficiently transfer heat from the hot side of the refractory to the cooler side, minimizing the temperature difference and reducing heat loss through radiation. Additionally, monolithic refractories provide a continuous and seamless lining, eliminating gaps and cracks that could allow heat to escape. The dense and compact structure of monolithic refractories also acts as a barrier to prevent radiation heat transfer. Overall, monolithic refractories play a crucial role in maintaining thermal insulation and preventing heat loss through radiation in various high-temperature applications.
Q: What are the recommended curing times for monolithic refractories?
The recommended curing times for monolithic refractories vary depending on the specific type and manufacturer's instructions. However, in general, it is recommended to allow monolithic refractories to cure for at least 24 to 48 hours before subjecting them to any heat or thermal stress. It is important to follow the specific curing guidelines provided by the manufacturer to ensure optimal performance and longevity of the refractory material.
Q: What are the specific requirements of monolithic refractories for continuous casting applications?
The specific requirements of monolithic refractories for continuous casting applications include high thermal shock resistance, excellent erosion resistance, good thermal conductivity, low shrinkage, and high refractoriness. These refractories must also have good flowability and workability to ensure easy installation and maintenance. Additionally, they should have a high degree of chemical stability to withstand the harsh conditions of molten metal and slag in continuous casting processes.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords