Z33 BMP Rolled Steel Coil Construction Roofing Construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Structure of Z33 BMP Rolled Steel Coil Construction Roofing Construction
Description of Z33 BMP Rolled Steel Coil Construction Roofing Construction
PPGI is made by cold rolled steel sheet and galvanized steel sheets as baseplate, through the surface pretreatment (degreasing, cleaning, chemical conversion processing), coated by the method of continuous coatings (roller coating method),
and after roasting and cooling. Zinc coating: Z60, Z80, Z100, Z120, Z180, Z275, G30, G60, G90
Alu-zinc coating: AZ60, AZ80, AZ100, AZ120, AZ180, G30, G60, G90
Main Feature of Z33 BMP Rolled Steel Coil Construction Roofing Construction
1) Excellent corrosion resistance: The zinc layer provides a good protection of Pre-painted Galvanizeed Steel Sheet.
2) High heat resistance: The reflective surface of the material aids in efficiently reflecting the sunlight away and in turn reducing the amount of heat transmitted. The thermal reflectivity converts into energy savings.
3) Aesthetics: Pre-Painted Galvanized steel sheet is available in plethora of patterns and multiple sizes as per the requirements that given by our customers.
4) Versatility: can be used in the various areas.Standard seaworthy export packing: 3 layers of packing, inside is kraft paper, water plastic film is in the middle and outside GI steel sheet to be covered by steel strips with lock, with inner coil sleeve.
Applications of Z33 BMP Rolled Steel Coil Construction Roofing Construction
1. Construction and building: roofing; ventilating duct; handrail; partition panel;etc.
2. Electric appliance: refrigerator; washing machine; refrigerator; DVD;etc.
3.Transportation: oil tank; road sign; etc.
4.Agriculture:barn; etc.
5.Others:vending machine; game machine; etc.
Specifications of Z33 BMP Rolled Steel Coil Construction Roofing Construction
Classified symbol | Yield Point Minimum N/mm2 | Tensile Strength Minimum | Elongation Minimum % | Application | ||||
N/mm2 | Nominal Thickness mm (t) | |||||||
JIS | Yogic | 0.25-0.4 | 0.4-0.6 | 0.6-1.0 | 1.0-1.6 | |||
G3312 | specification | |||||||
CGCC | CGCC | -205 | -270 | -20 | -21 | -24 | -24 | Commercial |
CGCD | CGCD | --- | 270 | --- | 27 | 31 | 32 | Drawing |
--- | CG340 | 245 | 340 | 20 | 20 | 20 | 20 | Structural |
CGC400 | CG400 | 295 | 400 | 16 | 17 | 18 | 18 | Structural |
CGC440 | CG440 | 335 | 440 | 14 | 15 | 16 | 18 | Structural |
CGC490 | CG490 | 365 | 490 | 12 | 13 | 14 | 16 | Structural |
CGC570 | CG570 | 560 | 570 | --- | --- | --- | --- | Structural |
ASTM Designation | Yield Point Minimum | Tensile Strength Minimum | Elongation Minimum % | Application | Q/BQB 445-2004(China standard) | ASM A653/A653M | JISG 3312 | |
ksi(MPa) | ksi(MPa) | TDC51D+Z | (CS TYPE A+Z) | CGCC | ||||
A653(M)-99 CS TYPE A,B,C | --- | --- | --- | Commercial | TDC52D+Z | CGCD | ||
A653(M)-99 FS | --- | --- | --- | Lock Forming | TS250GD+Z | (G250+Z) | - | |
A653(M)-99 DS | --- | --- | --- | Drawing | TS300GS+Z | (G300+Z) | CGC 400 | |
A653(M)-99 SS Grade33(230) | 33(230) | 45(310) | 20 | Structural | TS350GD+Z | (G350+Z) | CGC490 | |
A653(M)-99 SS Grade37(255) | 37(255) | 52(360) | 18 | Structural | TS550GD+Z | (G550+Z) | CGC570 | |
A653(M)-99 SS Grade40(275) | 40(275) | 55(380) | 16 | Structural | ||||
A653(M)-99 SS Grade50(345) | 50(345) | 65(450) | 12 | Structural | ||||
A653(M)-99 SS Grade80(550) | 80(550) | 82(570) | --- | Structural |
FAQ of Z33 BMP Rolled Steel Coil Construction Roofing Construction
We have organized several common questions for our clients,may help you sincerely:
1. How Can I Visit There?
Our company is located in Tianjin City, China, near Beijing. You can fly to Tianjin Airport Directly. All our clients, from home or aboard, are warmly welcome to visit us!
2. How Can I Get Some Sample?
We are honored to offer you sample.
3. Why choose CNBM?
1, ISO, BV, CE, SGS approved.
2, Competitive price and quality.
3, Efficient service team online for 24 hours.
4, Smooth production ability(50000tons/month) .
5, quick delivery and standard exporting package.
6, Flexible payment with T/T, L/C, Paypal, Kunlun bank, etc .
- Q: How are steel billets used in the production of automotive fuel systems?
- Automotive fuel systems rely on steel billets as a necessary element. These billets, typically crafted from top-grade steel, serve as the primary material for manufacturing various fuel system components such as fuel injectors, fuel rails, and fuel tank brackets. The initial step in utilizing steel billets for automotive fuel systems involves selecting the appropriate steel grade. The selected steel must possess specific mechanical properties, including high strength, weldability, and corrosion resistance. These properties ensure the durability of the fuel system components, enabling them to withstand the demanding conditions and stresses they will encounter throughout their lifespan. Once the steel billets are chosen, they undergo a series of manufacturing processes, including forging, machining, and heat treatment. Forging molds the billets into the desired shapes using a combination of heat and pressure. This process guarantees that the fuel system components possess the necessary strength and resilience. Machining is another crucial stage in the production of automotive fuel systems. This process entails removing excess material from the forged billets to achieve the desired shape and dimensions. Precise machining ensures that the fuel system components fit seamlessly within the overall system, allowing for efficient and dependable fuel delivery. Following the machining process, the fuel system components undergo heat treatment. This involves subjecting the components to specific temperatures and controlled cooling rates. Heat treatment enhances the mechanical properties of the steel, further bolstering its strength and toughness. Once the fuel system components are manufactured from the steel billets and have undergone all the necessary processes, they are assembled into the final fuel system. These components play a pivotal role in facilitating the efficient and safe delivery of fuel from the tank to the engine. For instance, fuel injectors ensure precise fuel delivery, fuel rails provide a pathway for fuel flow, and fuel tank brackets securely hold the tank in place. In conclusion, steel billets are an indispensable ingredient in the production of automotive fuel systems. Through a series of manufacturing processes including forging, machining, and heat treatment, these billets are transformed into high-quality fuel system components. When assembled, these components create a fuel system that enables automobiles to achieve efficient and reliable fuel delivery.
- Q: What are the different types of coating processes used for protecting steel billets?
- Steel billets can be protected using various coating processes. These processes serve the purpose of preventing corrosion and enhancing the durability of the steel billets. Some commonly employed coating methods are as follows: 1. Hot-dip galvanizing: In this technique, the steel billets are immersed in molten zinc, creating a safeguarding layer on the surface. This zinc layer ensures long-lasting protection against corrosion. 2. Electroplating: By using an electric current, a thin layer of metals like zinc, nickel, or chrome is deposited onto the steel billets. This metal coating acts as a barrier against corrosion while improving the appearance of the steel. 3. Powder coating: A dry powder is applied to the steel billets and then heated, resulting in the formation of a protective layer. This process offers exceptional resistance against corrosion, chemicals, and UV rays. 4. Thermal spray coating: This method involves spraying melted or heated materials onto the steel billets. The coating materials can include metal alloys, ceramics, or polymers. Thermal spray coatings provide excellent wear resistance, corrosion protection, and thermal insulation. 5. Paint coating: Applying paint onto the steel billets is a popular protective measure. The paint acts as a barrier, preventing moisture and atmospheric elements from causing corrosion while maintaining the steel's appearance. Each coating process has its own advantages and is suitable for different applications. The choice of coating method depends on factors such as the desired level of protection, environmental conditions, and cost considerations.
- Q: How are steel billets handled during transportation?
- Steel billets are typically handled during transportation using specialized equipment such as cranes or forklifts. They are typically secured with chains or straps to prevent any movement or shifting during transit. Additionally, proper packaging and labeling are important to ensure safe and efficient handling during transportation.
- Q: What are the cost implications of using steel billets in manufacturing?
- Using steel billets in manufacturing can have several cost implications. First and foremost, the cost of steel billets themselves needs to be considered. The price of steel billets can vary depending on factors such as market demand, availability, and the grade of steel used. Therefore, fluctuations in steel prices can directly impact the cost of manufacturing. Additionally, the cost of transportation and logistics needs to be taken into account. Steel billets are heavy and bulky, requiring specialized handling and transportation methods. This can result in higher shipping costs, especially if the manufacturing facility is located far away from the source of steel billets. Furthermore, the cost of processing and shaping steel billets into the desired form for manufacturing needs to be considered. This includes expenses associated with cutting, welding, forging, and any other necessary fabrication processes. The complexity of these processes and the required machinery can have a significant impact on the overall cost of using steel billets. Another cost implication is related to the quality of steel billets. Inferior quality billets can lead to lower product quality and higher rejection rates, resulting in increased manufacturing costs. Therefore, it is important to source steel billets from reputable suppliers to ensure consistent quality and minimize the risk of defects. In terms of long-term costs, the durability and strength of steel make it an attractive choice for manufacturing. Steel is known for its longevity and resistance to wear and tear, reducing the need for frequent replacements and repairs. This can result in long-term cost savings for manufacturers. Lastly, it is essential to consider the environmental and sustainability aspects associated with using steel billets. Steel production is energy-intensive and can have a significant carbon footprint. Increasingly, manufacturers are being held accountable for their environmental impact, which can lead to additional costs in terms of compliance with regulations or implementing sustainable practices. In summary, the cost implications of using steel billets in manufacturing involve the price of the billets themselves, transportation costs, processing expenses, quality considerations, long-term durability, and sustainability factors. Careful analysis of these cost factors is crucial for manufacturers to make informed decisions and optimize their manufacturing processes.
- Q: How are steel billets used in the production of mining conveyors?
- Steel billets are a crucial component in the production of mining conveyors. Mining conveyors are used to transport bulk materials, such as coal, ore, and gravel, over long distances. These conveyors need to be sturdy and durable to withstand the harsh conditions of a mining environment. Steel billets serve as the raw material for manufacturing conveyor rollers. Conveyor rollers are an essential part of the conveyor system as they support and guide the conveyor belt. Steel billets are first heated and then rolled into desired shapes to create the conveyor rollers. The heating process helps in improving the steel's malleability, making it easier to shape. The use of steel billets in the production of mining conveyors ensures that the rollers have high strength and resistance to wear and tear. The steel's properties, such as its toughness and hardness, make it ideal for withstanding heavy loads and abrasive materials. Furthermore, steel billets can be customized to meet specific requirements. Different mining operations may have different needs in terms of conveyor dimensions, load capacities, and environmental conditions. Steel billets allow manufacturers to produce conveyor rollers of various sizes and specifications, ensuring that they are tailored to the specific needs of each mining operation. In summary, steel billets play a vital role in the production of mining conveyors by providing the raw material for manufacturing conveyor rollers. These rollers are essential for supporting and guiding the conveyor belt, ensuring efficient and reliable transportation of bulk materials in a mining environment. The use of steel billets ensures that the conveyor rollers are strong, durable, and capable of withstanding the harsh conditions of the mining industry.
- Q: What are the main factors affecting the dimensional tolerances of steel billets?
- The main factors affecting the dimensional tolerances of steel billets include the quality of the raw material used, the manufacturing process employed, and the precision of the equipment and tools used during production. Additionally, environmental conditions such as temperature and humidity can also impact the dimensional tolerances of steel billets.
- Q: What are the potential applications of steel billets in the packaging aftermarket?
- Steel billets have various potential applications in the packaging aftermarket. They can be utilized for manufacturing sturdy and durable packaging materials such as steel drums, containers, and pallets. Steel billets provide excellent strength and impact resistance, making them ideal for protecting and transporting heavy or delicate goods. Additionally, their recyclability and sustainability make them a preferred choice for eco-conscious packaging solutions.
- Q: What are the safety precautions when handling steel billets?
- When handling steel billets, some important safety precautions to follow include wearing appropriate personal protective equipment such as gloves, safety glasses, and steel-toed boots to protect against potential injuries. It is also crucial to ensure proper lifting techniques, using machinery or equipment designed for the task, to prevent strains or injuries. Additionally, maintaining a clean and organized work area, free from clutter and obstacles, can help minimize accidents and tripping hazards. Regular inspections of equipment, such as cranes or lifting devices, should be carried out to identify any potential malfunctions or defects that could compromise safety. Lastly, proper communication and training among workers is essential to ensure everyone understands and follows safety protocols when handling steel billets.
- Q: What are the different shapes and sizes of steel billets?
- Steel billets come in a variety of shapes and sizes, depending on their intended use and the manufacturing process. The most common shapes of steel billets include square, rectangular, and round. Square billets are typically used for forging and rolling processes, where they are heated and shaped into various products such as bars, rods, and rails. These billets have equal dimensions on all sides, forming a square shape. Rectangular billets, on the other hand, have longer sides and shorter ends, resembling a rectangular shape. These billets are commonly used in the production of structural components, like beams and columns, as well as for making pipes and tubes. Round billets, as the name suggests, have a cylindrical shape and are often used in the manufacturing of seamless pipes, axles, and shafts. Due to their uniform circular cross-section, they are well-suited for processes that involve rotary motion or require a strong cylindrical shape. In terms of sizes, steel billets can vary greatly depending on the specific requirements of the final product. Their dimensions are determined by factors such as the desired end product, the manufacturing process, and the available equipment. Common sizes range from small billets, typically measuring around 100mm to 200mm in diameter or width, to larger billets that can exceed 300mm in diameter or width. It is important to note that steel billets can also be customized to meet specific size and shape requirements of different industries. This flexibility allows for the production of a wide range of steel products, catering to diverse applications in construction, automotive, and other manufacturing sectors.
- Q: What are the different surface treatments for steel billets?
- There are several different surface treatments that can be applied to steel billets to enhance their performance and protect them from corrosion. One common surface treatment is hot-dip galvanizing, where the steel billets are dipped into a bath of molten zinc. This creates a protective coating of zinc on the surface of the billets, which acts as a barrier against moisture and other corrosive elements. Another option is electroplating, where a thin layer of metal, such as chromium or nickel, is deposited onto the surface of the steel billets using an electric current. This not only provides corrosion resistance but can also improve the appearance of the billets. A third surface treatment method is painting or powder coating. This involves applying a layer of paint or dry powder onto the surface of the billets. The paint or powder forms a protective barrier that prevents moisture and other corrosive substances from reaching the steel. Additionally, shot blasting or sandblasting can be used as a surface treatment for steel billets. This involves propelling abrasive particles at high speeds onto the surface of the billets to remove any impurities or scale, leaving a clean and smooth finish. Lastly, there are also chemical treatments available for steel billets. One example is phosphating, where the steel is immersed in a phosphoric acid solution, resulting in the formation of a protective phosphate coating on the surface. This coating improves corrosion resistance and promotes paint adhesion. Overall, the choice of surface treatment for steel billets depends on the specific requirements of the application and the desired level of protection against corrosion and other environmental factors.
Send your message to us
Z33 BMP Rolled Steel Coil Construction Roofing Construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords