• Steel Plate DIN 1.2344 Special Steel Carbon Steel System 1
  • Steel Plate DIN 1.2344 Special Steel Carbon Steel System 2
  • Steel Plate DIN 1.2344 Special Steel Carbon Steel System 3
Steel Plate DIN 1.2344 Special Steel Carbon Steel

Steel Plate DIN 1.2344 Special Steel Carbon Steel

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Sheet
Standard:
ASTM,JIS,EN,API,DIN,BS,GB,AISI
Surface Treatment:
Dry,Oiled,Color Coated,Copper Coated,Coated,Galvanized,PVDF Coated,Bright,Polished,Chromed Passivation,Black
Shape:
Round,Hexagonal,C Channel,Square,U Channel
Technique:
Spring,EFW,Extruded,Forged,ERW,Cold Drawn,Cold Rolled,Hot Rolled
Certification:
BSI,UL,API,CE,RoHS,IBR,BV,SGS,ISO
Steel Grade:
A53(A,B),20#,10#,SS400-SS490,600 Series,400 Series,300 Series,200 Series,HRB400,RHB335,Q235B,Q215B,Q235,Q215,Q195
Thickness:
as required
Length:
as required
Net Weight:
as required

Chemical Composition%

CountryStandardCSiMnCrMoVSP
China(GB)4Cr5NoSiV10.32-0.450.80-1.200.20-0.504.75-5.501.10-1.750.80-1.20≤0.030≤0.030
USA(ASTM)H130.32-0.450.80-1.200.20-0.504.75-5.501.10-1.750.80-1.20≤0.030≤0.030
Germany(DIN)1.23440.37-0.420.90-1.200.30-0.504.80-5.501.20-1.500.90-1.10≤0.030≤0.030
Japan(JIS)SKD610.37-0.420.90-1.20≤0.504.50-5.501.00-1.500.80-1.20≤0.030≤0.030

 

Available Size

Rolled flat steel20-90mm×205-610mm×L

 

Heat Treatment

ItemTemperature℃Hardness
Anneal 750-800≤229HB
Quenching1020-105056-58HRC
Quenching530-60045-50HRC

 

Characterstics

1.Higher thermal strength and hardness 
2.Better toughness and elevated temperature fatigue resistance 
3.Hardness maintaining ability at 600℃
4.Good polishing performance

 

Applications: Suitable for aluminum and copper die-casting moulds working for long time at elevated temperatures,hot extrusion dies,core rod forging dies,plastic moulds,etc,also suitable for heat resistance thimbles,push rods and ejector sleeves


Steel Plate DIN 1.2344 Special Steel Carbon Steel

.jpg


Q:What are the main characteristics of pressure vessel steel?
Pressure vessel steel is a specialized type of steel that is manufactured and designed to endure high-pressure environments. It possesses distinct properties that enable it to be suitable for such applications. To begin with, pressure vessel steel demonstrates exceptional strength and toughness. It can withstand the internal pressure exerted upon it without deforming or rupturing, thereby ensuring the security and integrity of the vessel. Achieving this high strength involves carefully alloying and heat treatment processes that enhance its mechanical properties. In addition, pressure vessel steel displays favorable weldability. This is crucial as pressure vessels often require the joining of various components. The capacity to weld the steel without compromising its structural integrity is imperative for fabricating and maintaining pressure vessels. Moreover, pressure vessel steel is renowned for its elevated corrosion resistance. Typically, the steel is alloyed with elements like chromium, molybdenum, and nickel, which provide a protective barrier against corrosive substances and environments. This plays a vital role in preventing the deterioration of the vessel and ensuring its long-term durability. Furthermore, pressure vessel steel possesses the ability to withstand a wide range of temperatures. It can maintain its strength and toughness even under extreme temperature conditions, rendering it suitable for applications where the vessel is exposed to high or low temperatures. Lastly, pressure vessel steel is subjected to stringent testing and quality control measures to guarantee its reliability and safety. It must meet specific standards and certifications, such as those established by organizations like the American Society of Mechanical Engineers (ASME), to be deemed suitable for pressure vessel applications. Overall, the primary characteristics of pressure vessel steel include high strength and toughness, favorable weldability, corrosion resistance, temperature resistance, and adherence to strict quality standards. These properties make it an ideal material for constructing pressure vessels, which find application in various industries such as oil and gas, chemical processing, and power generation.
Q:How does special steel resist wear and tear?
Special steel resists wear and tear through its unique composition and heat treatment processes. It typically contains additives such as chromium, molybdenum, and vanadium, which enhance its hardness, corrosion resistance, and durability. Additionally, special steel undergoes specialized heat treatment techniques like quenching and tempering, which further improve its strength and ability to withstand stress and abrasion. These properties make special steel highly resistant to wear and tear, allowing it to maintain its structural integrity and performance over extended periods of use.
Q:What are the different cutting tools used for machining special steel?
There are various cutting tools used for machining special steel, including carbide inserts, high-speed steel (HSS) tools, ceramic inserts, and diamond tools. These tools are designed to withstand the high temperatures and hardness of special steel, providing efficient cutting and shaping capabilities.
Q:What are the requirements for special steel used in high-strength applications?
To ensure the performance and durability of special steel used in high-strength applications, specific requirements must be met. These requirements encompass various factors: 1. High tensile strength is crucial in withstanding heavy loads and resisting deformation. It enables the steel to endure greater stresses without failure. 2. Excellent toughness is essential as it allows the steel to absorb energy and resist fracture. This prevents sudden and catastrophic failure under impact or dynamic loading conditions. 3. Superior hardness is necessary to resist wear, abrasion, and indentation. It ensures that the material maintains its structural integrity and performance even in extreme conditions. 4. Good ductility is important alongside high tensile strength. It allows the steel to undergo plastic deformation without fracturing, making it suitable for forming or shaping during manufacturing. 5. Resistance to corrosion is vital to prevent degradation caused by moisture, chemicals, or harsh environments. This ensures the longevity and reliability of the steel in various conditions. 6. Heat resistance is required for applications involving high temperatures. It allows the steel to maintain its mechanical properties and structural stability under elevated temperatures. 7. Controlled alloying elements, such as chromium, molybdenum, nickel, or vanadium, are often added to enhance the steel's strength, toughness, hardness, and other desired properties. 8. Precise composition and microstructure are necessary to ensure consistent and predictable mechanical properties. This can be achieved through precise manufacturing processes like controlled cooling rates or heat treatments. By meeting these requirements, special steel used in high-strength applications can endure the demanding conditions it faces, providing reliable performance, longevity, and safety.
Q:What is the role of cobalt in special steel?
Cobalt plays a crucial role in special steel as it acts as a stabilizing element, improving the steel's strength, toughness, and resistance to corrosion and wear. It also helps in retaining the steel's magnetic properties, making it suitable for applications in the aerospace, automotive, and energy sectors.
Q:How does special steel contribute to the medical field?
Special steel plays a crucial role in the medical field by offering unique properties and characteristics that are essential for various medical applications. Firstly, special steel is widely used in the production of surgical instruments and medical devices due to its exceptional strength, durability, and corrosion resistance. These qualities ensure that the instruments can withstand the demanding environment of surgical procedures, remain sharp for extended periods, and resist the effects of sterilization processes. Additionally, special steel is utilized in the manufacturing of implants and prosthetics. Its biocompatibility and high strength-to-weight ratio make it an ideal material for creating artificial joints, spinal implants, and dental implants. Special steel's ability to integrate with the human body without causing adverse reactions or rejection is crucial for the success of these medical interventions. Moreover, special steel is employed in the production of medical equipment such as MRI machines, X-ray machines, and radiation shields. The unique magnetic properties of certain types of special steel enable the creation of powerful magnets used in MRI machines, allowing for detailed and accurate imaging of the human body. Furthermore, special steel's ability to shield against radiation makes it an essential component in radiation therapy equipment, protecting healthcare professionals and patients from harmful radiation exposure. In summary, special steel is a critical material in the medical field due to its strength, durability, corrosion resistance, biocompatibility, and unique magnetic properties. Its applications range from surgical instruments and medical devices to implants, prosthetics, and medical equipment. The contributions of special steel in the medical field are indispensable, ensuring the safety, effectiveness, and success of various medical procedures and treatments.
Q:How does special steel contribute to the transportation industry?
Special steel plays a crucial role in the transportation industry by providing strength, durability, and reliability to various components and structures. It is used in the construction of vehicle bodies, engines, chassis, and suspension systems, ensuring safety and longevity. Additionally, special steel's high resistance to corrosion and fatigue helps extend the lifespan of transportation equipment, reducing maintenance costs and enhancing efficiency. Overall, special steel enhances the performance, efficiency, and safety of vehicles, making it an invaluable material in the transportation industry.
Q:How does special steel perform in abrasive environments?
Special steel performs exceptionally well in abrasive environments due to its high hardness, superior resistance to wear and tear, and excellent corrosion resistance. It is specifically designed to withstand the harsh conditions of abrasive environments, such as those with sand, gravel, or other abrasive particles. The unique composition and properties of special steel enable it to maintain its integrity and durability even when exposed to extreme abrasion, making it an ideal choice for applications in industries like mining, construction, and manufacturing.
Q:What are the properties of maraging steel?
Maraging steel is a unique alloy known for its exceptional strength, toughness, and resistance to corrosion. It is characterized by its high yield strength, making it suitable for applications that require strong and durable materials. Maraging steel also exhibits excellent machinability and weldability, allowing for ease of fabrication and assembly. Additionally, it is known for its exceptional resistance to stress corrosion cracking, making it an ideal choice for critical components in aerospace, defense, and other high-performance industries.
Q:How does special steel contribute to the agricultural machinery industry?
The agricultural machinery industry heavily relies on special steel to improve the overall efficiency, durability, and productivity of agricultural equipment. A major advantage of special steel in this industry is its exceptional strength and toughness, which allows for the production of robust and reliable machinery. Agricultural equipment, including tractors, combines, and harvesters, often faces intense operational conditions such as heavy loads, extreme temperatures, and exposure to corrosive elements. Special steel provides the necessary strength and resistance to withstand these challenging environments, ensuring optimal performance for extended periods. Furthermore, special steel alloys offer excellent wear resistance, enabling agricultural machinery to endure the abrasive nature of farming operations. This is especially crucial for components like blades, plows, and tillage tools, which are constantly exposed to soil, rocks, and other abrasive materials. By utilizing high-quality special steel, manufacturers can manufacture durable and long-lasting equipment, reducing maintenance requirements and improving the overall reliability of agricultural machinery. In addition, special steel allows for the development and construction of more efficient agricultural machinery. Thanks to its superior strength-to-weight ratio, special steel facilitates the production of lighter yet robust equipment. Consequently, this improves fuel efficiency, reduces energy consumption, and enhances maneuverability. Moreover, special steel's excellent machinability and formability enable manufacturers to create intricate and customized components, meeting specific agricultural needs and increasing machinery efficiency. Moreover, special steel contributes to the agricultural machinery industry by providing resistance to corrosion and rust. Agricultural equipment is often exposed to moisture, fertilizers, and chemicals, which can result in corrosion and degradation over time. Special steel alloys with corrosion-resistant properties, such as stainless steel, can significantly prolong the lifespan of machinery and reduce maintenance costs. In conclusion, special steel is indispensable for the agricultural machinery industry as it enhances the durability, efficiency, and productivity of equipment. Its strength, wear resistance, design flexibility, and corrosion-resistant properties make it the preferred choice for manufacturing high-quality machinery capable of withstanding the demanding conditions of agricultural operations.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords