• Hot Rolled Rebar Screw Thread Steel Bar System 1
  • Hot Rolled Rebar Screw Thread Steel Bar System 2
  • Hot Rolled Rebar Screw Thread Steel Bar System 3
  • Hot Rolled Rebar Screw Thread Steel Bar System 4
  • Hot Rolled Rebar Screw Thread Steel Bar System 5
  • Hot Rolled Rebar Screw Thread Steel Bar System 6
Hot Rolled Rebar Screw Thread Steel Bar

Hot Rolled Rebar Screw Thread Steel Bar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar
Thread Steel Bar  


Description of Thread Steel Bar  

1, Diameter: 5.5mm-10mm Thread Steel Bar  

                       10m- 40mm Thread Steel Bar  

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black 

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of Thread Steel Bar  

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of Thread Steel Bar  

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q: Can special steel be used for musical instruments?
Yes, special steel can be used for musical instruments. Steel alloys such as stainless steel or carbon steel are commonly used in the construction of certain musical instruments, particularly those requiring durability and resistance to corrosion. Examples include steel drums, certain percussion instruments, and parts of brass instruments like trumpets.
Q: Can special steel be used in the oil refinery industry?
Yes, special steel can be used in the oil refinery industry. Special steels, such as stainless steel and duplex stainless steel, offer superior corrosion resistance and high strength properties, making them suitable for various applications in oil refineries. These steels can withstand harsh operating conditions, including exposure to corrosive chemicals and high temperatures, ensuring the durability and safety of equipment and infrastructure in the oil refinery industry.
Q: What are the different testing methods used for special steel?
There are several testing methods commonly used for special steel, including mechanical testing, non-destructive testing (NDT), and chemical analysis. Mechanical testing involves evaluating the physical properties of the steel, such as tensile strength, hardness, and impact resistance. NDT methods, such as ultrasonic testing, magnetic particle inspection, and radiographic testing, are used to detect defects or flaws in the steel without causing any damage. Chemical analysis involves determining the composition and elemental content of the steel, which is crucial for ensuring its quality and performance. These testing methods are essential in ensuring the reliability and suitability of special steel for various applications.
Q: How does special steel contribute to the industrial machinery aftermarket industry?
Special steel plays a crucial role in the industrial machinery aftermarket industry by providing high-quality, durable, and customized components that are essential for repairing and maintaining machinery. Its unique properties, such as high strength, toughness, corrosion resistance, and heat resistance, enable the production of precision components that can withstand heavy industrial usage. This contributes to the efficiency, reliability, and longevity of machinery, reducing downtime and overall costs for businesses in the aftermarket industry.
Q: How does special steel contribute to the energy sector?
Special steel contributes to the energy sector by providing high-strength materials that are essential for the construction of various energy infrastructure projects. It is used in the manufacturing of turbines, generators, and power transmission equipment, ensuring efficient energy production and distribution. Additionally, special steel is crucial in the construction of pipelines and storage tanks for the oil and gas industry, enhancing their durability and safety. Overall, the use of special steel in the energy sector plays a vital role in supporting reliable and sustainable energy production.
Q: What are the different welding techniques for special steel?
There are several different welding techniques that can be used for special steel, depending on the specific requirements and characteristics of the steel. Some of the commonly used welding techniques for special steel include: 1. Shielded Metal Arc Welding (SMAW): Also known as stick welding, SMAW uses a consumable electrode coated in flux to create an arc between the electrode and the base metal. This technique is versatile and can be used for a wide range of steel types, including special steel. 2. Gas Metal Arc Welding (GMAW): Also known as MIG (Metal Inert Gas) welding, GMAW uses a continuous solid wire electrode and a shielding gas to protect the weld from atmospheric contamination. This technique is commonly used for thinner special steel materials. 3. Flux-Cored Arc Welding (FCAW): Similar to GMAW, FCAW uses a continuous tubular electrode filled with flux. This flux provides additional shielding and can allow for higher deposition rates. FCAW is suitable for special steel with thick sections or when welding in outdoor or windy conditions. 4. Gas Tungsten Arc Welding (GTAW): Also known as TIG (Tungsten Inert Gas) welding, GTAW uses a non-consumable tungsten electrode and a shielding gas. This technique is known for its precision and is often used for special steel alloys that require high-quality and aesthetically pleasing welds. 5. Plasma Arc Welding (PAW): PAW is similar to GTAW but uses a more focused arc created by passing gas through a constricted nozzle. This technique is often used for special steel alloys that have higher melting temperatures or require deeper penetration. 6. Submerged Arc Welding (SAW): SAW involves feeding a continuous wire electrode into a molten flux layer that covers the weld. This technique is commonly used for heavy and thick special steel sections, as it provides excellent penetration and high deposition rates. It is important to choose the most appropriate welding technique for special steel based on factors such as the steel composition, thickness, intended application, and desired weld quality. Consulting with a qualified welding professional or referring to the steel manufacturer's recommendations can help ensure the best welding technique is selected for the specific special steel being used.
Q: What is the impact of high temperature on the mechanical properties of special steel?
The mechanical properties of special steel are significantly affected by high temperature. When subjected to high temperatures, special steel may experience thermal softening, which leads to a decrease in its mechanical strength. This is primarily caused by the reduction in yield strength and hardness of the material at elevated temperatures. One of the main consequences of high temperature on special steel is the decrease in its ability to resist deformation. At elevated temperatures, the steel becomes more ductile, making it more prone to elongation and plastic deformation. This increase in ductility can result in a loss of shape and integrity under load, leading to distortion, warping, or even component failure. Additionally, high temperatures can induce changes in the microstructure of special steel. Prolonged exposure to elevated temperatures can result in the formation and growth of grain boundaries, weakening the material's mechanical properties. Moreover, high temperature can facilitate the diffusion of impurities or alloying elements within the steel, altering its chemical composition and potentially affecting its mechanical behavior. Another consequence of high temperature on special steel is the decrease in its resistance to corrosion and oxidation. At elevated temperatures, the steel becomes more vulnerable to oxidation, leading to the formation of scales or even complete degradation of the material. This compromises the steel's mechanical properties, including its strength and toughness. In conclusion, high temperature has a detrimental impact on the mechanical properties of special steel. It reduces strength, increases ductility, alters microstructure, and decreases resistance to corrosion and oxidation. Therefore, it is crucial to consider the effects of high temperature when designing and selecting special steel for applications involving exposure to elevated temperatures.
Q: How does special steel contribute to the chemical processing aftermarket industry?
Special steel plays a crucial role in the chemical processing aftermarket industry by offering exceptional resistance to corrosion, high temperatures, and pressure. Its unique properties enable the production of high-quality and durable equipment such as valves, pumps, pipes, and heat exchangers. This ensures the safe and efficient handling of corrosive chemicals, thereby reducing maintenance costs, preventing leaks, and minimizing production downtime. Overall, special steel enhances the reliability, longevity, and performance of chemical processing equipment, making it an indispensable component of the aftermarket industry.
Q: How is special steel used in toolmaking?
Special steel is used in toolmaking because of its exceptional properties such as high hardness, toughness, and wear resistance. It is utilized to manufacture various types of tools including drills, cutting tools, dies, and molds. The superior properties of special steel enable these tools to withstand high temperatures, resist deformation, and maintain sharpness for extended periods. Additionally, special steel can be heat treated to achieve specific characteristics, making it an ideal choice for toolmaking applications.
Q: How does special steel contribute to the aerospace fastener industry?
Special steel contributes to the aerospace fastener industry by offering enhanced strength, durability, and resistance to extreme temperatures and corrosion. These properties make it a crucial material for manufacturing aerospace fasteners, which are essential for holding aircraft structures together. The high-performance nature of special steel ensures the reliability and safety of fasteners, ultimately contributing to the overall efficiency and success of the aerospace industry.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords